During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
So far, APT (Advanced Persistent Threats) is a constant concern for information security. Despite that, many approaches have been used in order to detect APT attacks, such as change controlling, sandboxing and network traffic analysis. However, success of 100% couldn’t be achieved. Current studies have illustrated that APTs adopt many complex techniques to evade all detection types. This paper describes and analyzes APT problems by analyzing the most common techniques, tools and pathways used by attackers. In addition, it highlights the weaknesses and strengths of the existing security solutions that have been used since the threat was identified in 2006 until 2019. Furthermore, this research proposes a new framework that can be u
... Show MoreChange detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac
The Digital Elevation Model (DEM) has been known as a quantitative description of the surface of the Earth, which provides essential information about the terrain. DEMs are significant information sources for a number of practical applications that need surface elevation data. The open-source DEM datasets, such as the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), and the Advanced Land Observing Satellite (ALOS) usually have approximately low accuracy and coarser resolution. The errors in many datasets of DEMs have already been generally examined for their importance, where their quality could be affected within different aspects, including the types of sensors, algor
... Show MoreNowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naï
... Show MoreThere is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreBackground Subtraction (BGS) is one of the main techniques used for moving object detection which further utilized in video analysis, especially in video surveillance systems. Practically, acquiring a robust background (reference) image is a real challenge due to the dynamic change in the scene. Hence, a key point to BGS is background modeling, in which a model is built and repeatedly used to reconstruct the background image.
From N frames the proposed method store N pixels at location(x,y) in a buffer, then it classify pixel intensity values at that buffer using a proposed online clustering model based on the idea of relative run length, the cluster center with the highest frequency will be adopted as the background pixel
... Show More— To identify the effect of deep learning strategy on mathematics achievement and practical intelligence among secondary school students during the 2022/2023 academic year. In the research, the experimental research method with two groups (experimental and control) with a post-test were adopted. The research community is represented by the female students of the fifth scientific grade from the first Karkh Education Directorate. (61) female students were intentionally chosen, and they were divided into two groups: an experimental group (30) students who were taught according to the proposed strategy, and a control group (31) students who were taught according to the usual method. For the purpose of collecting data for the experimen
... Show More