Preferred Language
Articles
/
ixgsxJUBVTCNdQwCpn5d
Performance enhancement of natural asphalt using waste-derived modifiers: Sugarcane molasses and waste engine oil
...Show More Authors

The growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that modified blends with a high WEO content significantly increased fluidity, reducing rotational viscosity by up to 91 % for the blend with 40 % WEO and 10 % SM at 135 ◦C. Conversely, higher SM content increased stiffness, as seen in the blend with 40 % SM and 10 % WEO, with penetration values rising by 305 % compared to unmodified NA. Rheological testing showed that the 40 % SM and 10 % WEO blend achieved the highest rutting resistance with a Performance Grade (PG) of 88 ◦C, while the 40 % WEO and 10 % SM blend exhibited the best fatigue resistance with a 55 % reduction in G* .sinδ. Low-temperature performance was significantly improved across all blends, with the 40 % WEO and 10 % SM blend achieving the lowest creep stiffness and highest m-value, ensuring superior thermal cracking resistance. Chemical analysis revealed increased oxygen content (18.6 %) and reduced sulfur content (60 %) in the 40 % SM and 10 % WEO blend, indicating enhanced oxidation resistance. SEM analysis confirmed the development of dense morphology in the 40 % SM and 10 % WEO blend, correlating with superior structural integrity. Grey decision analysis identified the 40 % SM and 10 % WEO blend as the optimal blend with the lowest bull’s-eye distance, reflecting balanced performance across all parameters. These findings highlight the complementary effects of SM and WEO in enhancing the performance of NA, with the 40 % SM and 10 % WEO blend emerging as the most promising blend for bio-asphalt applications.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Feb 01 2024
Journal Name
Microbial Pathogenesis
Evaluation of antibacterial, antifungal and antibiofilm activities of A. baumannii-derived tannase and gallic acid against uropathogenic microorganisms
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Enhancement of the Detection of the TCP SYN Flooding (DDoS) Attack
...Show More Authors

The major of DDoS attacks use TCP protocol and the TCP SYN flooding attack is the most common one among them. The SYN Cookie mechanism is used to defend against the TCP SYN flooding attack. It is an effective defense, but it has a disadvantage of high calculations and it doesn’t differentiate spoofed packets from legitimate packets. Therefore, filtering the spoofed packet can effectively enhance the SYN Cookie activity. Hop Count Filtering (HCF) is another mechanism used at the server side to filter spoofed packets. This mechanism has a drawback of being not a perfect and final solution in defending against the TCP SYN flooding attack. An enhanced mechanism of Integrating and combining the SYN Cookie with Hop Count Filtering (HCF) mech

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 18 2022
Journal Name
Sustainability
A Sustainable Cold Mix Asphalt Mixture Comprising Paper Sludge Ash and Cement Kiln Dust
...Show More Authors

Concerns about the environment, the cost of energy, and safety mean that low-energy cold-mix asphalt materials are very interesting as a potential replacement for present-day hot mix asphalt. The main disadvantage of cold bituminous emulsion mixtures is their poor early life strength, meaning they require a long time to achieve mature strength. This research work aims to study the protentional utilization of waste and by-product materials as a filler in cold emulsion mixtures with mechanical properties comparable to those of traditional hot mix asphalt. Accordingly, cold mix asphalt was prepared to utilize paper sludge ash (PSA) and cement kiln dust (CKD) as a substitution for conventional mineral filler with percentages ranging fro

... Show More
View Publication
Scopus (23)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Sat Aug 21 2021
Journal Name
Engineering, Technology & Applied Science Research
A Comparison between Static and Repeated Load Test to Predict Asphalt Concrete Rut Depth
...Show More Authors

Rutting has a significant impact on the pavements' performance. Rutting depth is often used as a parameter to assess the quality of pavements. The Asphalt Institute (AI) design method prescribes a maximum allowable rutting depth of 13mm, whereas the AASHTO design method stipulates a critical serviceability index of 2.5 which is equivalent to an average rutting depth of 15mm. In this research, static and repeated compression tests were performed to evaluate the permanent strain based on (1) the relationship between mix properties (asphalt content and type), and (2) testing temperature. The results indicated that the accumulated plastic strain was higher during the repeated load test than that during the static load tests. Notably, temperatur

... Show More
View Publication
Crossref (16)
Crossref
Publication Date
Wed May 08 2024
Journal Name
Applied Sciences
Nano-Additives in Asphalt Binder: Bridging the Gap between Traditional Materials and Modern Requirements
...Show More Authors

This research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add

... Show More
View Publication
Scopus (22)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Wed May 08 2024
Journal Name
Applied Sciences
Nano-Additives in Asphalt Binder: Bridging the Gap between Traditional Materials and Modern Requirements
...Show More Authors

This research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add

... Show More
View Publication
Scopus (22)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Wed Dec 14 2022
Journal Name
Civil Engineering Journal
Rutting Prediction of Hot Mix Asphalt Mixtures Modified by Nano silica and Subjected to Aging Process
...Show More Authors

High-volume traffic with ultra-heavy axle loads combined with extremely hot weather conditions increases the propagation of rutting in flexible pavement road networks. Several studies suggested using nanomaterials in asphalt modification to delay the deterioration of asphalt pavement. The current work aims to improve the resistance of hot mix asphalt (HMA) to rutting by incorporating Nano Silica (NS) in specific concentrations. NS was blended into asphalt mixtures in concentrations of 2, 4, and 6% by weight of the binder. The behavior of asphalt mixtures subjected to aging was investigated at different stages (short-term and long-term aging). The performance characteristics of the asphalt mixtures were evaluated using the Marshall s

... Show More
Scopus (21)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Tue Oct 01 2024
Journal Name
Infrastructures
Enhancing Moisture Damage Resistance in Asphalt Concrete: The Role of Mix Variables, Hydrated Lime and Nanomaterials
...Show More Authors

Moisture-induced damage is a serious problem that severely impairs asphaltic pavement and affects road serviceability. This study examined numerous variables in asphalt concrete mixtures to assess their impact on moisture damage resistance. Mix design parameters such as the asphalt content (AC) and aggregate passing sieve No. 4 (PNo. 4) were considered as variables during this study. Additionally, hydrated lime (HL) was utilized as a partial substitute for limestone dust (LS) filler at 1.5% by weight of the aggregate in asphalt concrete mixtures for the surface layer. This study also investigated the potential enhancement of traditional asphalt binders and mixtures by adding nano-additives, specifically nano-silica oxide (NS) and na

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Moisture Susceptibility of Hot Mix Asphalt Mixtures Modified by Nano Silica and Subjected to Aging Process
...Show More Authors

Moisture damage is described as a reduction in stiffness and strength durability in asphalt mixtures due to moisture. This study investigated the influence of adding nano silica (NS) to the Asphalt on the moisture susceptibility of hot-mix-asphalt (HMA) mixtures under different aging conditions. NS was mixed with asphalt binder at concentrations of 2%, 4%, and 6% by weight of the binder. To detect the microstructure changes of modified Asphalt and estimate the dispersion of NS within the Asphalt, the field emission scanning electron microscope (FE-SEM) was used. To examine the performance of Asphalt mixed with NS at different aging stages (short-term and long-term aging), asphalt mixture tests such as Marshall stability,

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Sun Nov 13 2022
Journal Name
Journal Of Kufa For Chemical Sciences
Preparation, characterisation and biological activity of some metal complexes derived from new dithiocarbamate of heterocyclic ligand
...Show More Authors

In this study, synthesised new ligand: potassium 2,2'-(quinoxaline-2,3- diyl)bis(1-phenylhydrazinecarbodithioate) (L). The ligand synthesised by reacting N1,N2-dip-tolyloxalamide as the starting material with CS2 and KOH to add the CS2 group and then with phenylendiammine to achieve (L). The ligand used in the synthesis of complexes with (CoII, NiII and CdII). The new ligand and its complexes characterised by FT-IR, UV-Vis, 1H, 13C-NMR, Mass spectroscopy, and elemental analysis, in addition to the above techniques were using magnetic moment, atomic absorption, chloride content, and melting point to describe the metal complexes.

View Publication Preview PDF