In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe he
... Show MoreOvako Working Postures Analyzing System (OWAS) is a widely used method for studying awkward working postures in workplaces. This study with OWAS, analyzed working postures for manual material handling of laminations at stacking workstation for water pump assembly line in Electrical Industrial Company (EICO) / Baghdad. A computer program, WinOWAS, was used for the study. In real life workstation was found that more than 26% of the working postures observed were classified as either AC2 (slightly harmful), AC3 (distinctly harmful). Postures that needed to be corrected soon (AC3) and corresponding tasks, were identified. The most stressful tasks observed were grasping, handling, and positioning of the laminations from workers. The construct
... Show MoreIn this work an approach has been developed to investigate the influence of surface roughness on thermohydrodynamic performance in aligned and misaligned journal bearings by considering an average flow model and deriving the shear flow factor for various roughness configurations, similar to the pressure flow factor. An average Reynolds equation for rough surfaces is defined in term of pressure and shear flow factors, which can be obtained by numerical flow simulation, though the use of measured or numerically generated rough surfaces. Reynolds, heat conduction and energy equations are solved simultaneously by using a suitable numerical technique (Finite Difference Method) to obtain the pressure and temperature di
... Show MoreEM International
This piece of research work aims to study one of the most difficult reaction and determination due to continuous and rapid variation of reaction products and the reactants. As molybdenum (VI) aid in the decomposition of hydrogen peroxide in alkaline medium of ammomia, thus means a continuous liberation of oxygen which cuases and in a continuous manner a distraction in the measurement process. On this basis pyrogallol was used to absorbe all liberated oxygen and the result is an a clean undisturbed signals. Molybdenum (VI) was determined in the range of 4-100 ?g.ml-1 with percentage linearity of 99.8% or (4-300 ?g.ml-1 with 94.4%) while L.O.D. was 3.5 ?g.ml-1. Interferring ions (cations and anions) were studied and their main effect was red
... Show MoreIn this paper, the ability of using corn leaves as low-cost natural biowaste adsorbent material for the removal of Indigo Carmen (IC) dye was studied. Batch mode system was used to study several parameters such as, contact time (4 days), concentration of dye (10-50) ppm, adsorbent dosage (0.05-0.25) gram, pH (2-12) and temperature (30-60) oC. The corn leaf was characterized by Fourier-transform infrared spectroscopy device before and after the adsorption process of the IC dye and scanning electron microscope device was used to find the morphology of the adsorbent material. The experimental data was imputing with several isotherms where it fits with Freundlich (R2 = 0.9937) and followed pseudo second order kinetic. The hi
... Show MoreThe study deals with reactivity insertion linear and non linear and/or Ramp reactivity expressed as a polynomial in time in the presence of two Feedback mechanisms, using the neutronic-thermohydraulic coupling in order to predict the neutron behavior as a function of time in terms of reactor power. Also, a comparative study has been achieved in the case of the presence of the feedback mechanisms. Insertion of Ramp reactivities in terms of polynomial in time to study the behavior of power and reactivity as a function of time in the presence of two feedback mechanisms (fuel and coolant) has been carried out and the results are displayed as plots, and showed this results corresponding with international results. The present study shows t
... Show More