Preferred Language
Articles
/
ixeUQo8BVTCNdQwCome8
Distribution of Land Surface Temperatures from Satellite Images for Al-Hammar Marshes In Iraq
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sun Jul 01 2018
Journal Name
Journal Of Pharmaceutical Sciences And Research
Study of Environmental and Biological characteristics of AL-Chibaish marshes and their effect to the biodiversity of southern Iraq
...Show More Authors

The Mesopotamian marshlands faced a massive destruction from many years and this lead to effect to ecosystem. In this study a survey was made on the physical chemical and heavy metals characteristics and microbiological analysis of AL Chibaish marsh during the two months. Water analyses revealed unacceptable values for almost all physiochemical and biological properties, according to WHO standard limits for drinking water. Almost all major ions and heavy metal concentrations in water showed a distinct decreasing trend at the marsh outlet station compared to other stations. In general, major and minor ions, as well as heavy metals exhibit higher concentrations in location 1 than in location 3. The concentrations of heavy metals in water show

... Show More
Scopus
Publication Date
Wed Jan 30 2019
Journal Name
Journal Of The College Of Education For Women
Variables Impact Spatial Change for Rural Settlement in Al-Hammer Marsh-Land in Governorate of Thi-Quar
...Show More Authors

During the period 1970-2006 the Marshes-land region was exposed to several change into many sides of vanishing steeling and growth as follow :
1- Drying this region after 1991,and re-flooded again during 2003. Many other large Marsh-land, like al-Hawaisa was dried by cutting off inlet-water fed from Iran sources .As asqunance there are transferred to different kinds of swamps ,followed by major change in the structure of the region as the rural settlement concerned. Rural settlement in this area starts new push of migration. The research did not take that in consideration in this thesis because some others took it in details in some thesis and researches. The situation of Marsh-land is getting anew face after those major changes which

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Distinguishing Cartoons Images from Real –Life Images
...Show More Authors

Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Monitoring the Vegetation and Water Content of Al-Hammar Marsh Using Remote Sensing Techniques
...Show More Authors

The object of the presented study was to monitor the changes that had happened in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To fulfill this goal, different satellite images had been used in different times, MSS 1973, TM 1990, ETM+ 2000, 2002, and MODIS 2009, 2010. A new technique of the unsupervised classification called (Color Extracting Technique) was used to classify the satellite images. MATLAP programming used the technique and separated Al-Hammar Marsh from other water features (rivers, irrigated lands, etc.) when calculated the changes in the water content of the study region. ArcGIS 9.3 (arcMAP, arcToolbox) were used to achieve this work and calculate area of each class.

View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Iraqi Journal Of Physics
Assessment of Sustainable Urban Expansion with Land Use and Land Cover Changes for Al-Hillah City Using Remote Sensing and GIS Techniques
...Show More Authors

In the current study, remote sensing techniques and geographic information systems were used to detect changes in land use / land cover (LULC) in the city of Al Hillah, central Iraq for the period from 1990 - 2022. Landsat 5 TM and Landsat 8 OLI visualizations, correction and georeferencing of satellite visuals were used. And then make the necessary classifications to show the changes in LULC in the city of Al Hillah. Through the study, the results showed that there is a clear expansion in the urban area from 20.5 km2 in 1990 to about 57 km2 in 2022. On the other hand, the results showed that there is a slight increase in agricultural areas and water. While the arid (empty) area decreased from 168.7 km 2 to 122 km 2 in 2022. Long-term ur

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Temperatures Distribution and Residual Stresses of High Melting Temperature Polymer
...Show More Authors

This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 03 2013
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Publication Date
Sat Jul 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Monitoring the Land surface temperature LST with different seasons for Babylon City using GIS and R.S techniques
...Show More Authors
Abstract<p>This paper is based on the Sentinel-2 satellite data: the thermal, red, and NIR bands. The Babylon city was chosen in this study for different reasons: its location in the middle of Iraq and it represents the largest capitals of the Mesopotamia civilization in the word. The Land Surface Temperature (LST) was determined using a method that incorporates remote sensing, geographic information systems, and statistics. This process has made it possible to monitor the relationship between land usage and the land surface temperature for four seasons in the year 2021. The mapswere processed and analyzed by using ArcGIS software. Five maps of the LST were constructed. Each map represents diffe</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Monitoring of environmental variations of marshes in Iraq using Adaptive classification method.
...Show More Authors

The object of the presented study was to monitor the changes that had happened
in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To
fulfill this goal, different satellite images had been used in different times, MSS
1973, TM 1990, ETM+ 2000 and MODIS 2010. K-Means which is unsupervised
classification and Neural Net which is supervised classification was used to classify
the satellite images 0Tand finally by use 0Tadaptive classification 0Twhich is0T3T 0T3Tapply
s0Tupervised classification on the unsupervised classification. ENVI soft where used
in this study.

View Publication Preview PDF