<span>Digital audio is required to transmit large sizes of audio information through the most common communication systems; in turn this leads to more challenges in both storage and archieving. In this paper, an efficient audio compressive scheme is proposed, it depends on combined transform coding scheme; it is consist of i) bi-orthogonal (tab 9/7) wavelet transform to decompose the audio signal into low & multi high sub-bands, ii) then the produced sub-bands passed through DCT to de-correlate the signal, iii) the product of the combined transform stage is passed through progressive hierarchical quantization, then traditional run-length encoding (RLE), iv) and finally LZW coding to generate the output mate bitstream.
... Show MoreThe aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other
... Show MoreIn this paper, the Monte Carlo N-Particle extended computer code (MCNP) were used to design a model of the European Sodium-cooled Fast Reactor. The multiplication factor, conversion factor, delayed neutrons fraction, doppler constant, control rod worth, sodium void worth, masses for major heavy nuclei, radial and axial power distribution at high burnup are studied. The results show that the reactor breeds fissile isotopes with a conversion ratio of 0.994 at fuel burnup 70 (GWd/T), and minor actinides are buildup inside the reactor core. The study aims to check the efficiency of the model on the calculation of the neutronic parameters of the core at high burnup.
The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.
Abstract. In this paper, a high order extended state observer (HOESO) based a sliding mode control (SMC) is proposed for a flexible joint robot (FJR) system in the presence of time varying external disturbance. A composite controller is integrated the merits of both HOESO and SMC to enhance the tracking performance of FJR system under the time varying and fast lumped disturbance. First, the HOESO estimator is constructed based on only one measured state to precisely estimate unknown system states and lumped disturbance with its high order derivatives in the FJR system. Second, the SMC scheme is designed based on such accurate estimations to govern the nominal FJR system by well compensating the estimation errors in the states and the lumped
... Show MoreIn this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
Over the years, the field of Medical Imagology has gained considerable importance. The number of neuroimaging studies conducted using functional magnetic resonance imaging (fMRI) has been exploding in recent years. fMRI survey gives to rise to large amounts of noisy data with a complex spatiotemporal correlation structure. Statistics play great role in clarifying the features of the data and gain results that can be used and explain by neuroscientists. Several types of artifacts can happen through a functional magnetic resonance imaging (fMRI) scanner Because of software or hardware problems, physical limitation or human physiologic phenomenon. Several of them can negatively affect di
Zernike Moments has been popularly used in many shape-based image retrieval studies due to its powerful shape representation. However its strength and weaknesses have not been clearly highlighted in the previous studies. Thus, its powerful shape representation could not be fully utilized. In this paper, a method to fully capture the shape representation properties of Zernike Moments is implemented and tested on a single object for binary and grey level images. The proposed method works by determining the boundary of the shape object and then resizing the object shape to the boundary of the image. Three case studies were made. Case 1 is the Zernike Moments implementation on the original shape object image. In Case 2, the centroid of the s
... Show MoreMoment invariants have wide applications in image recognition since they were proposed.
Fe3O4:Ce thin films were deposited on glass and Si substrates by Pulse Laser Deposition Technique (PLD). Polycrystalline nature of the cubic structure with the preferred orientation of (311) are proved by X-ray diffraction. The nano size of the prepared films are revealed by SEM measurement. Undoped Iron oxide and doped with different concentration of Ce films have direct allowed transition band gap with 2.15±0.1 eV which is confirmed by PL Photoluminescence measurements. The PL spectra consist of the emission band located at two sets of peaks, set (A) at 579±2 nm , and set (B) at 650 nm, respectively when it is excited at an excitation wavelength of 280 nm at room temperature. I-V characteristics have been studied in the dark and under v
... Show More