Mixed ligand metal complexes are synthesized from oxalic acid with Schiff base, and the Schiff base was obtained from trimethoprim and acetylacetone. The synthesized complexes were of the type [M(L1)(L2)], where the metal, M, is Ni(II), Cu(II), Cr(III), and Zn(II), L1 corresponds to the trimethoprim ((Z)-4-((4-amino-5-(3,4,5- trimethoxybenzyl)pyrimidine-2-yl)imino)pentane-2-one) as the first ligand and L2 represent the oxalate anion (𝐶𝑂 ) as a second ligand. Characterization of the prepared compounds was performed by elemental analysis, molar conductivity, magnetic measurements, 1H-NMR, 13C-NMR, FT-IR, and Ultraviolet-visible (UV-Vis) spectral studies. The recorded infrared data is reinforced with density functional theory (DFT) calculations. Also, the recorded and calculated IR spectra of the complexes suggested that the coordination of Schiff base is a bidentate ligand with Cu and Ni complexes and a tridentate ligand with Co, Cr, and Zn complexes. The electronic structures of the complexes were investigated by DFT calculations, showing several degrees of HOMOLUMO energy gaps between complexes. The complexes were studied for their DNA interaction activities. The synthesized ligand and its metal complexes were evaluated for antimicrobial properties against bacterial strains of Bacillus subtilis (G+), Enterobacter cloacae (G-), and Staphylococcus aureus (G+). These complexes considered in this study showed good antimicrobial activity.
Two Schiff bases, namely, 3-(benzylidene amino) -2-thioxo-6-methyl 2,5-dihydropyrimidine-4(3H)-one (LS])and 3-(benzylidene amino)-6-methyl pyrimidine 4(3H, 5H)-dione(LA)as chelating ligands), were used to prepare some complexes of Cr(III), La(III), and Ce(III)] ions. Standard physico-chemical procedures including metal analysis M%, element microanalysis (C.H.N.S) , magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identify Metal (III) complexes and Schiff bases (LS) and (LA). According to findings, a [Cr(III) complex] showed six coordinated octahedral geometry, while [La(III), and Ce(III) complexes]were structured with coordination number seven. Schiff's bases a
... Show MoreA multistep synthesis was established for the preparation of a new vanillic acid-1, 2, 4-1triazole-3-thiol conjugate (
The present paper describes the synthesis and structural studies of new transition metal complexes of cobalt(II), nickel(II), copper(II) and cadmium(II) with two bi dentate ligands derived from quinoxaline-2,3-dione. The two ligands were fully identified by elemental analyses, FT-IR, NMR and UV-Visible spectra. The metal complexes of Co(II), Ni(II), Cu(II) and Cd(II) were isolated in the solid state after reactions of their metal chlorides with the ligands in 2:1 mole ratio. The isolated solid metal complexes were characterized with the help of elemental analyses, NMR, FT-IR and UV-Visible spectra. As well as the thermal stability of the coordinated quinoxaline polymers were tested by TG-DSC analysis and it is found th
... Show MoreA new Schiff base ligand [2,3,8,9–tetra -phenyl-1,4,5,7,10,12-hexa azo-5,12- dihydro -6,11- dione 1,3,7,10-dudec-tetra-ene] [H2L] and its complexes In general formula [M(H2L)]Cl2 (where : M= CoII, NiII, and PdII) were prepared. This ligand was prepared in two steps,in the first step a solution of benzil in methanol was reacted under reflux with semicarbazidhydrochlorid to give an (intermediate compound)[benzyl bis–(Semicarbazone)] which was reacted in the second step with benzil giving the mentioned ligand. The
... Show MoreThe ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
ليكاند ازو جديد. 4-((3-formyl-2-hydroxyphenyl)diazenyl)-N-(5-methylisoxazol-3-yl)benzenesulfonamide, الليكاند المحضر استعمل لتحضير معقدات من ايونات معادن مختلفة مثل الكروم الثلاثي والمنغنيز الثنائي والحديد الثلاثي والبلاديوم الثنائي بنسب مولية (1:1) ( ليكاند : فلز) نتائج التشخيص للمركبات يتقنيات مطيافية الاشعة فوق البنفسجية الاشعة تحت الحمراء الرنين النووي المغناطيسي البروتوني والكربوني وطيف الكتلة والتحليل الدقيق للعناصر ومحتوى الفلز وال
... Show MoreMixed ligand complexes of bivalent metal ions, viz; M= Fe(II),Co(II),Ni(II),Cu(II), Zn(II), Cd (II), and Hg(II) of the composition Na2[M (Amox)(Sac)3] in 1:1:3 molar ratio, (where Amox = Amoxicillin tryhydrate (C16H19N3O5S.H2O) and Sac = Saccharine(C7H5NO3S) have been synthesized and characterized by repeated melting point determination, Solubility, Molar conductivity, determination the percentage of the metal in the complexes by flame(AAS), FT-IR, magnetic susceptibility measurements and electronic spectral data. The ligands and their metal complexes have been screened for their biological activity against selected microbial strains (gram +ve) and (gram -ve).
Acidity constants at 30co and 0.125 ionic strength have been determined for the Nitrogous bases of nucleic acid; cytocine, uarcil and thymine, and found to be 3.55 x10-19 , 1.44 x10 -19 and 7.24 x10 -20 respectively. Stability constants of these bases with Thorium and uranyl ions have been determined. Results showed that metal ions Thorium and uranyl ions behave as hard acids and the nitrogenum bases behave as Hard bases according to Pearson's definition .Hardness – softness parameters for these ligands were calculated ,stability constants of complexes with metal ions could be arranged as follows :- Cytosine > Uracil > Thymine .
The aim of this work is synthesis of _Eoly (Vinyl-4-AminoBenzoate) (PVAB) from reaction of _Eoly Vinyl Alkohol PVA with 4-aminobenzoyl chloride in alkaline media. We also prepare the metal complexes of poly (vinyl- 4-aminobenzoate) and antimicrobial properties were evaluated by dilute method against five pathogenic bacteria (Escherichia coli, Shigella dysentery, Klebsiella pneumonae, Staphylococcus aureus, Staphylococcus Albus) and two fungal (Aspergillus Niger, Yeast). All polymer metal complexes showed different activities against the various microbial isolates. The polymer metal complexes showed higher activity than the free polymer.