Mixed ligand metal complexes are synthesized from oxalic acid with Schiff base, and the Schiff base was obtained from trimethoprim and acetylacetone. The synthesized complexes were of the type [M(L1)(L2)], where the metal, M, is Ni(II), Cu(II), Cr(III), and Zn(II), L1 corresponds to the trimethoprim ((Z)-4-((4-amino-5-(3,4,5- trimethoxybenzyl)pyrimidine-2-yl)imino)pentane-2-one) as the first ligand and L2 represent the oxalate anion (𝐶𝑂 ) as a second ligand. Characterization of the prepared compounds was performed by elemental analysis, molar conductivity, magnetic measurements, 1H-NMR, 13C-NMR, FT-IR, and Ultraviolet-visible (UV-Vis) spectral studies. The recorded infrared data is reinforced with density functional theory (DFT) calculations. Also, the recorded and calculated IR spectra of the complexes suggested that the coordination of Schiff base is a bidentate ligand with Cu and Ni complexes and a tridentate ligand with Co, Cr, and Zn complexes. The electronic structures of the complexes were investigated by DFT calculations, showing several degrees of HOMOLUMO energy gaps between complexes. The complexes were studied for their DNA interaction activities. The synthesized ligand and its metal complexes were evaluated for antimicrobial properties against bacterial strains of Bacillus subtilis (G+), Enterobacter cloacae (G-), and Staphylococcus aureus (G+). These complexes considered in this study showed good antimicrobial activity.
A Ligand (ECA) methyl 2-((1-cyano-2-ethoxy-2-oxoethyl)diazenyl)benzoate with metals of (Co2+, Ni2+, Cu2+) were prepared and characterization using H-NMR, atomic absorption spectroscopy, ultra violet (UV) visible, magnetic moments measurements, bioactivity, and Molar conductivity measurements in soluble ethanol. Complexes have been prepared using a general formula which was suggested as [M (ECA)2] Cl2, where M = (Cobalt(II), Nickel(II) and Copper(II), the geometry shape of the complexes is octahedral.
Azo ligand 4-((2-hydroxy-3,5-dimethylphenyl)diazenyl) benzoic acid was synthesized from 4-aminobenzoic acid and 2,4- dimethylphenol. Azo dye compounds have been characterized by different techniques (1H-NMR, UV-Vis and FT-IR). Metal chelates of (ZnII, CdII and HgII) have been synthesized with azo ligand (L). Produced compounds have been identified by using spectral studies, elemental analysis(C.H.N.) and conductivity. Produced metal chelates were studied using mole ratio as well sequences contrast types. Rate of concentration(1×10-4-3×10-4 Mole/L) sequence Beer's law. Compound solutions have been noticed height molar absorptivity. The addendum of ligand and compounds has applied as disperse dyes on cotton fabrics for antibacterial activit
... Show MoreIn this study, novel Schiff base complexes with Zn(II) and Co(II) ions were successfully synthesized. The malonic acid dihydrazide was converted into the Schiff base ligand by combining it with 1-hydroxy-2-naphthaldehyde, and the last step required reacting it with the appropriate metal(II) chloride to produce pure target complexes. The generated complexes were thoroughly characterized using FTIR, 1H-NMR, 13C-NMR, GC-mass, and UV-Vis spectroscopies. In order to photo-stabilize polystyrene (PS) and reduce the photodegradation of its polymeric chains, these chemicals have been used in this work. The efficiency of the generated complexes as photo-stabilizers was evaluated using a variety of techniques, including FTIR, weight loss, visc
... Show MoreThe present study deals with the synthesis of four different azo-azomethine derivatives; this is done by two steps; the first step is diazotization of sulfonamides (sulfanilamide, sulfacetamide, sulfamethoxazole, and sulfadiazine) separately, followed by the second step; the coupling reaction of diazotized compounds with isatin bis-Schiff base named 3-((4-nitrobenzylidene) hydrazono)indolin-2-one. The later one (bis-Schiff base) was synthesized by the reaction of 3-hydrazono-indolin-2-one with p-nitrobenzaldehyde. The chemical structures of newly synthesized compounds were approved on the basis of their FTIR, 1H-NMR, and CHNS elemental analysis data results. The synthesized azo compounds were tested in vitro for their antimicrobial potentia
... Show MoreThe new multidentate Schiff-base (E)-6,6′-((1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-ylidene))bis(4-methyl-2-((E)(pyridine-2-ylmethylimino)methyl)phenol) H2L and its polymeric binuclear metal complexes with Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) are reported. The reaction of 2,6-diformyl-4-methyl-phenol with ethylenediamine in mole ratios of 2:1 gave the precursor 3,3′-(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1ylidene))bis(methan-1-yl-1-ylidene)bis(2-hydroxy-5-methylbenzaldehyde) W. Condensation of the precursor with 2-(amino-methyl)pyridine in mole ratios of 1:2 gave the new N6O2 multidentate Schiff-base ligand H2L. Upon complex formation, the ligand behaves as a dibasic oct
... Show MoreOne of the most difficult tasks in modern medical societies is the process of identifying a cure for many infectious diseases caused by drug-resistant microbes. Therefore, it has become necessary to discover new compounds that work in this regard. The currently prepared Schiff base, derived from thiazole, has a biological activity against bacteria and biofilms and its activity increases when it is associated with copper, zinc and platinum ions and forms metal complexes. This study highlights the synthesis and evaluation of novel biological compounds as inhibitors of bacterial growth and biofilms. A three newly complexes are resulting from the reaction of a new Schiff base ligand (LC) with metal ions (Zn, Cu, Pt). The new ligand (LC)
... Show MoreNew complexes of the type [ML2(H2O)2] ,[FeL2(H2O)Cl] and [VOL2] were M=Co(II),Ni(II) and Cu(II) ,L=4-(2-methyl-4-oxoquinazoline-3(4H)-yl) benzoic acid were synthesized and characterized by element analysis, magnetic susceptibility ,molar conductance ,FT-IR and UV-visible. The studies indicate that the L acts as doubly monodentate bridge for metal ions and form mononuclear complexes. The complexes are found to be octahedral except V(IV) complex is square pyrimde shape . The structural geometries of compounds were also suggested in gas phase by theoretical treatments, using Hyper chem-6 program for the molecular mechanics and semi-empirical calculations, addition heat of formation(?Hf ?) and binding energy (?Eb)for the free ligan
... Show MoreThe study involved preparing a new compound by combining between 2- hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries
... Show MoreThe study involved preparing a new compound by combining between 2-hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries.
... Show More