Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.
This paper describes the use of microcomputer as a laboratory instrument system. The system is focused on three weather variables measurement, are temperature, wind speed, and wind direction. This instrument is a type of data acquisition system; in this paper we deal with the design and implementation of data acquisition system based on personal computer (Pentium) using Industry Standard Architecture (ISA)bus. The design of this system involves mainly a hardware implementation, and the software programs that are used for testing, measuring and control. The system can be used to display the required information that can be transferred and processed from the external field to the system. A visual basic language with Microsoft foundation cl
... Show MoreThis research study Blur groups (Fuzzy Sets) which is the perception of the most modern in the application in various practical and theoretical areas and in various fields of life, was addressed to the fuzzy random variable whose value is not real, but the numbers Millbh because it expresses the mysterious phenomena or uncertain with measurements are not assertive. Fuzzy data were presented for binocular test and analysis of variance method of random Fuzzy variables , where this method depends on a number of assumptions, which is a problem that prevents the use of this method in the case of non-realized.
The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.
And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)
... Show MoreAmong the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show MoreThe tax policy is an important tool of fiscal policy tools which is usedasits multiple tools the State seeks to achieve objectives, such as theachievement of economic development.The importance of the research comes from the importance ofeconomic development resulting from economic policies and prudent fiscaland appropriate to the economic situation of Iraq at the moment is the mostimportant tax policy that taxes one of the most important financial instruments.The research aims to clarify the role of tax policy in developing of theIraqi economy.In an effort to achieve the goals researchers tried to prove thehypothesis ((The tax policy and through multiple tools that seeks to contributeto the achievement of economic development in Iraq)).
... Show MoreThe state and partial level densities were calculated using the corresponding formulas that are obtained in the frame work of the exciton model with equidistant spacing model (ESM) and non-ESM (NESM). Different corrections have been considered, which are obtained from other nuclear principles or models. These corrections are Pauli Exclusion Principle, surface effect, pairing effect, back shift due to shell effect and bound state effect . They are combined together in a composite formula with the intention to reach the final formula. One-component system at energies less than 100 MeV and mass number range (50-200) is assumed in the present work. It was found that Williams, plus spin formula is the most effective approach to the composite
... Show More