Preferred Language
Articles
/
ixaF44sBVTCNdQwCV-Nn
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Stages of integration scenarios with strategic management From the perspective of study the historical development of scenarios
...Show More Authors

Purpose: The present study seeks to examine various history stages in which undergone by the concept of scenarios, and development of this concept to integration with the strategic management practices:
Methodology: The current study relied on a literature review and approach in providing total picture of different stages undergone by this concept.
The main results: the scenarios did not reach maturity in their quest for integration with strategic management, and still need a great effort for the maturation of this thought in the framework of strategic management, and through it can contribute in creating important knowledge evolution.
Originality and value: providing a contemporary model linking the roots of this concept and cu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
The Influence of NMI against Modularity in Community Detection Problem: A Case Study for Unsigned and Signed Networks
...Show More Authors

Community detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
The Influence of NMI against Modularity in Community Detection Problem: A Case Study for Unsigned and Signed Networks
...Show More Authors

Community detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Althoug

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Development of an On-Line Self-Tuning FPGA-PID-PWM Control Algorithm Design for DC-DC Buck Converter in Mobile Applications
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimators of the parameter and Reliability Function of Inverse Rayleigh Distribution" A comparison study "
...Show More Authors

     In this paper, Bayesian estimator for the parameter and reliability function of inverse Rayleigh distribution (IRD) were obtained Under three types of loss function, namely, square error loss function (SELF), Modified Square error loss function (MSELF) and Precautionary loss function (PLF),taking into consideration the  informative and non- informative  prior. The performance of such estimators was assessed on the basis of mean square error (MSE) criterion by performing a Monte Carlo simulation technique.

View Publication Preview PDF
Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Transport Assessment Using Bayesian Method to Determine Ride-Hailing in Kula Lumpur: A Case Study
...Show More Authors

This research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Integration of Remotely Sensed Digital Elevation Model Data and Geographic Information System Facilities to Estimate Net Solar Radiation Variances in Iraq (1987-2017)
...Show More Authors

The calculation of potential earth's surface solar radiation is imperative for analyzing the atmosphere-vegetation-soil interaction process. Therefore, many schemes were introduced with  direct (using net radiometer) or indirect (using air temperature or air plus soil temperatures) formulas. Three combinations of factors are known to control the Rn value; the astronomical based factors which determine the general spatial distribution of Rn values, the climatological factors which determine the assigned spatial variation of those values, and the topographical factors that influence climatological factors rates ( i.e. have indirect effects on Rn values).

     For Iraq, the ecosystem in

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Numerical Investigation for Simulation of Thermophysical Properties for Polypropylene 575 Polymer Melts in Single Screw Extruder
...Show More Authors

A numerical model for Polypropylene 575 polymer melts flow along the solid conveying screw of a single screw extruder under constant heat flux using ANSYS-FLUENT 17.2 software has been conducted. The model uses the thermophysical properties such as Viscosity, thermal conductivity, Specific heat and density of polypropylene 575 that measured as a function of temperature, and residence time data for process simulation. The numerical simulation using CFD models for single screw extruder and the polymer extrusion was analysed for parameters such as (thermal conductivity, specific heat, density and viscosity) reveals a high degree of similarity to experimental data measured. The most important outcome of this study is that geometrical, parame

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 22 2021
Journal Name
Expert Systems
Hybrid intelligent technology for plant health using the fusion of evolutionary optimization and deep neural networks
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref