This study aimed to provide a conceptual model for the use and benefits of the e-Government as related to administrative fraud and financial corruption. The study also looked into their concepts, forms, dimensions and types and the role of e-Government on fraud reduction, corruption in administration and finance and its impact on the government performance. From the result, it is revealed that there is need for electronic government for implementation in order to curb the rate of fraud and administrative and financial corruption and improve the quality of service provision for better performance
This study aimed to identify the role of school administration in achieving educational and learning goals from the point of view of educational supervisors in the stage of basic education. The descriptive method was adopted. As for the sample size, it has reached (59) educational supervisors. A questionnaire consisting of 29 paragraphs divided into four areas was used. The data were statistically analyzed on the Chi-square test, the percentage, and the mono-variance analysis. The result showed that the school administration contributes to achieving educational goals. It also works to solve problems in democratic ways, and in modern methods, there are differences in the criteria for choosing the headmaster. The study recommended that sch
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThis Study aims at identifying the attitudes of Masses Media students in Baghdad university toward marriage and the differences of this variable according to sex and the grade. The sample consists of (160) male and Females students, where the questionnaire consists of (40) items’ after achieving their reliability and constancy.
The results show that the attitudes of the students are Positive, there are no differences in the attitudes toward marriage according to sex variable (males and females) and there are differences in the variable of grade toward marriage for the First Class. In the lights of these results the researcher suggests making improvements in the attitudes toward marriage suiting the social value and customs of Iraqi
An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreWith the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t
... Show MoreThe aim of this study is to compare the effects of three methods: problem-based learning (PBL), PBL with lecture method, and conventional teaching on the understanding of thermodynamics, group work and self-directed learning skills among physics undergraduates. The actual sample size comprises of 122 students, who were selected randomly from the Physics Department, College of Education in Iraq, for academic year 2011-2012. In this study, the pre and posttest were done and the instruments were administered to the students for data collection. Inferential statistics were employed to analyze data. The independent variables were the PBL, the PBL with lecture method, and the conventional teaching. Dependent variables of statistical analysis were
... Show MoreBackground: The presence of cancer has a profound psychological impact on the quality of life of patients and their families, on family and social relationships, and on role functioning.
Aim of the study: Assess the impact of childhood cancer on patients and their families.
Subjects and methods: A Prospective questionnaire-based study, for 151 patients, had malignancy identified by tumor registry of Children Welfare Teaching Hospital. The information was taken from the parent(s) in the presence of the patient who sometimes answered some questions during the interview.
Result: There was an interview with 151 families of children with cancer in t
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More