Background: The role of Human papillomaviruses (HPV) in the etiology of ovarian cancer remains unclear and the results are controversial. Several studies have verified the presence of HPV DNA in both malignant and benign ovarian tumors.
Objectives: Determine the percentage of detection of HPV high (16&18) and low risk types (6&11) in surface epithelial ovarian carcinoma compared to benign and control groups.
Materials And Methods: Molecular detection and genotyping of HPV DNA were performed in 76 ovarian tissue blocks by using in situ hybridization (ISH) technique for detecting and localization of high risk HPV (16 and 18) and low risk HPV (6&11) types.
Results: The presence of ISH signals for HPV DNA in benign group (71%) was higher than that found in malignant group (64%). HPV 16 was the most predominant type followed by HPV18, 6, and 11 respectively in both malignant and benign groups. High risk HPV were presented with low score and high intensity in both malignant and benign tumors. Low risk HPV types were detected in high score and intensity in benign tumors which significantly differed from that with malignant tumors, which revealed low score and low intensity. The percentage of co-infection of low risk HPV6&11 in benign group was higher (16.9%) than malignant group (7.1%). Only significant difference was found in combination of both high and low risk HPV types.
Conclusions: This finding reflects a possible role of HPV virus in the carcinogenesis of ovarian tumors. HPV infection may play a relative role in the pathogenesis of ovarian carcinomas or it could facilitate its progression.
Cyberbullying is one of the biggest electronic problems that takes multiple forms of harassment using various social media. Currently, this phenomenon has become very common and is increasing, especially for young people and adolescents. Negative comments have a significant and dangerous impact on society in general and on adolescents in particular. Therefore, one of the most successful prevention methods is to detect and block harmful messages and comments. In this research, negative Arabic comments that refer to cyberbullying will be detected using a support vector machine algorithm. The term frequency-inverse document frequency vectorizer and the count vectorizer methods were used for feature extraction, and the results wer
... Show MoreMalaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f
... Show MoreMost intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreDiscussed the research variables are important, privatization options and strategic analysis of the external environment, and that the purpose of the research is the trade-off between privatization options and choose the most appropriate alternative in proportion to the external environment, the research aims to determine the privatization the most appropriate option for companies and public contracting, showing the importance of the study provide the privatization of public companies as a strategy can all its way public sector organizations from the transfer of work practices or private sector organizations and mechanisms to it as contributing to improving the level of skills Develop the current and future level of performance,
... Show MoreSecure storage of confidential medical information is critical to healthcare organizations seeking to protect patient's privacy and comply with regulatory requirements. This paper presents a new scheme for secure storage of medical data using Chaskey cryptography and blockchain technology. The system uses Chaskey encryption to ensure integrity and confidentiality of medical data, blockchain technology to provide a scalable and decentralized storage solution. The system also uses Bflow segmentation and vertical segmentation technologies to enhance scalability and manage the stored data. In addition, the system uses smart contracts to enforce access control policies and other security measures. The description of the system detailing and p
... Show More