Objectives: The study aims to (1) Assess the parents' efficacy for child healthy weight behavior. (2) Identify the difference in parents’ efficacy for child healthy weight behavior between the groups of parent’s gender, family’s socioeconomic status, child’s gender, and child’s birth order, (3) Find out the relationship between parents’ age, child’s age, child’s body mass index, family’s socioeconomic status, the number of children in the family and parents’ efficacy for child healthy weight behavior.
Methodology: A descriptive correlational study is conducted for the period from November 11th, 2018 to March 25th, 2019 to assess the parents' efficacy for child healthy weight behavior. The study was carried-out in (30) primary schools that were selected through a simple random sampling of (125) schools from Hilla City. The instruments was composed of two parts , the first part was the demographic data and the second part was the Parent Efficacy for Child Healthy Weight Behavior (PECHWB) Scale, it consists of 41 items based on Australian guidelines for healthy weight behaviors. The validity of the instrument was achieved by eleven experts. Data were collected for the period from January 10th to March 5th, 2019. Data were analyzed using the statistical package for social sciences (SPSS) version 24.
Results: The study results revealed that most of pupils eat three or more serves of fruit and vegetables per day, minimize high fats and sugar intake, engaging in one hour of physical activity per day, and being no more than two hours in sedentary behavior per day on holidays/vacations and on weekends. Furthermore, they minimize high fats and sugar intake and eat healthy snacks on their demands/request. Moreover, they do not minimize high fats and sugar intake and eat healthy snacks when they are stressed or in bad mood and when they complain.
Recommendations: The researcher recommends establishing health activities that aim to raise the public’s awareness of fostering healthy lifestyle and behaviors for their children
This paper was aimed to study the efficiency of forward osmosis (FO) process as a new application for the treatment of wastewater from textile effluent and the factors affecting the performance of forward osmosis process.
The draw solutions used were magnesium chloride (MgCl2), and aluminum sulphate (Al2 ( SO4)3 .18 H2O), and the feed solutions used were reactive red, and disperse blue dyes.
Experimental work were includes operating the forward osmosis process using thin film composite (TFC) membrane as flat sheet for different draw solutions and feed solutions. The operating parameters studied were : draw solutions concentration (10 – 90 g/l), feed solutions concentration (5 – 30 mg/l), draw solutions flow rate (10 – 50 l/hr
Production of fatty acid esters (biodiesel) from oleic acid and 2-ethylhexanol using sulfated zirconia as solid catalyst for the production of biodiesel was investigated in this work.
The parameters studied were temperature of reaction (100 to 130°C), molar ratio of alcohol to free fatty acid (1:1 to 3:1), concentration of catalyst (0.5 to 3%wt), mixing speed (500 to 900 rpm) and types of sulfated zirconia (i.e modified, commercial, prepared catalyst according to literature and reused catalyst). The results show the best conversion to biodiesel was 97.74% at conditions of 130°C, 3:1, 2wt% and 650 rpm using modified catalyst respectively. Also, modified c
... Show MoreAn intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MorePathology reports are necessary for specialists to make an appropriate diagnosis of diseases in general and blood diseases in particular. Therefore, specialists check blood cells and other blood details. Thus, to diagnose a disease, specialists must analyze the factors of the patient’s blood and medical history. Generally, doctors have tended to use intelligent agents to help them with CBC analysis. However, these agents need analytical tools to extract the parameters (CBC parameters) employed in the prediction of the development of life-threatening bacteremia and offer prognostic data. Therefore, this paper proposes an enhancement to the Rabin–Karp algorithm and then mixes it with the fuzzy ratio to make this algorithm suitable
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show More