Objectives: The study aims to (1) Assess the parents' efficacy for child healthy weight behavior. (2) Identify the difference in parents’ efficacy for child healthy weight behavior between the groups of parent’s gender, family’s socioeconomic status, child’s gender, and child’s birth order, (3) Find out the relationship between parents’ age, child’s age, child’s body mass index, family’s socioeconomic status, the number of children in the family and parents’ efficacy for child healthy weight behavior.
Methodology: A descriptive correlational study is conducted for the period from November 11th, 2018 to March 25th, 2019 to assess the parents' efficacy for child healthy weight behavior. The study was carried-out in (30) primary schools that were selected through a simple random sampling of (125) schools from Hilla City. The instruments was composed of two parts , the first part was the demographic data and the second part was the Parent Efficacy for Child Healthy Weight Behavior (PECHWB) Scale, it consists of 41 items based on Australian guidelines for healthy weight behaviors. The validity of the instrument was achieved by eleven experts. Data were collected for the period from January 10th to March 5th, 2019. Data were analyzed using the statistical package for social sciences (SPSS) version 24.
Results: The study results revealed that most of pupils eat three or more serves of fruit and vegetables per day, minimize high fats and sugar intake, engaging in one hour of physical activity per day, and being no more than two hours in sedentary behavior per day on holidays/vacations and on weekends. Furthermore, they minimize high fats and sugar intake and eat healthy snacks on their demands/request. Moreover, they do not minimize high fats and sugar intake and eat healthy snacks when they are stressed or in bad mood and when they complain.
Recommendations: The researcher recommends establishing health activities that aim to raise the public’s awareness of fostering healthy lifestyle and behaviors for their children
In this study, the upgrading of Iraqi heavy crude oil was achieved utilizing the solvent deasphalting approach (SDA) and enhanced solvent deasphalting (e-SDA) by adding Nanosilica (NS). The NS was synthesized from local sand. The XRD result, referred to as the amorphous phase, has a wide peak at 2Θ= (22 - 23º) The inclusion of hydrogen-bonded silanol groups (Si–O–H) and siloxane groups (Si–O–Si) in the FTIR spectra. The SDA process was handled using n-pentane solvent at various solvent to oil ratios (SOR) (4-16/1ml/g), room and reflux temperature, and 0.5 h mixing time. In the e-SDA process, various fractions of the NS (1–7 wt.%) have been utilized with 61 nm particle size and 560.86 m²/g surface area in the presence of 12 m
... Show MoreThis study investigates the constructs and related theories that drive social capital in energy sector from the intention perspectives. This research uses theories of 'social support' and 'planned behaviour' alongside satisfaction and perceived value to propose a research model that drives social capital for energy sectors in Malaysia. The model reveals that the Theories of Planned Behaviour (TPB) and Social Support Theory (SST) alongside satisfaction and perceived value factors promote social capital development in energy sectors. Using PLS-SEM to analyse data gathered from energy sector employees in Malaysia, this research demonstrates that social capital is present when there is trust and loyalty among the users and positively effects en
... Show MoreThis manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.
: In this study, a linear synchronous machine is compared with a linear transverse flux machine. Both machines have been designed and built with the intention of being used as the power take off in a free piston engine. As both topologies are cylindrical, it is not possible to construct either using just flat laminations and so alternative methods are described and demonstrated. Despite the difference in topology and specification, the machines are compared on a common base in terms of rated force and suitability for use as a generator. Experience gained during the manufacture of two prototypes is described.
The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreIt is known that life is as series of variety of difficult problems that individual looks
forward to overcome so as to achieve adaptation and to reach the desired aims .The transition
of the students from the school stage to the stage of the university is actually regarded a
dramatic change where students face when they enter university life that differs from what
they lived in secondary school.
The executive functions are considered the main element that participate in solving the
problems of high orders , because it involves the mental abilities that assist individual to
think and initiative as well as solving problems .
These functions include operational planning and the activated memory and inhibition of
q
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show More