Abstract
Objectives: The study aims to: (1) Find out the relationship among participants’ age, body mass index (BMI), and Health Belief Model (HBM) related to colorectal examinations among graduate students. (2) Investigate the differences in Health Belief Model constructs between the groups of age, gender, marital status, and education level among graduate students.
Methodology: A descriptive correlational study design which conducted in the College of Fine Arts – University of Baghdad. A convenience sample of 80 graduate students were included in this study. The data were collected by using a self-reported questionnaire which consisted of two parts (I) socio-demographic characteristics (II) Colorectal Cancer Screening Beliefs Scale. The statistical package for social science (SPSS) for windows Version 24 was used for data analyses.
Results: The study finding revealed that the participants’ age mean was 39.82. There was no significant association between all Model constructs and each of age and BMI. While, there was a positive significant association between participants’ perceived susceptibility of contracting colorectal cancer and their perceived severity of colorectal cancer. Furthermore, there was a statistically significant difference in the cues to action related to performing colorectal examinations between education level groups.
Recommendations: Future studies and instructional programs based on the Health Belief Model are needed on various segments of the Iraqi population with the goal of changing the public’s beliefs about performing colorectal examinations.
In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete
... Show MoreAdsorption techniques are widely used to remove organics pollutants from waste water particularly, when using low cost adsorbent available in Iraq. Al-Khriet powder which was found in legs of Typha Domingensis is used as bio sorbent for removing phenolic compounds from aqueous solution. The influence of adsorbent dosage and contact time on removal percentage and adsorb ate amount of phenol and 4- nitro phenol onto Al-Khriet were studied. The highest adsorption capacity was for 4-nitrophenol 91.5% than for phenol 82% with 50 mg/L concentration, 0.5 gm. dosage of adsorbent and pH 6 under a batch condition. The experimental data were tested using different isotherm models. The results show that Freundlich model resulted in the best fit also
... Show MoreThe High Power Amplifiers (HPAs), which are used in wireless communication, are distinctly characterized by nonlinear properties. The linearity of the HPA can be accomplished by retreating an HPA to put it in a linear region on account of power performance loss. Meanwhile the Orthogonal Frequency Division Multiplex signal is very rough. Therefore, it will be required a large undo to the linear action area that leads to a vital loss in power efficiency. Thereby, back-off is not a positive solution. A Simplicial Canonical Piecewise-Linear (SCPWL) model based digital predistorters are widely employed to compensating the nonlinear distortion that introduced by a HPA component in OFDM technology. In this paper, the genetic al
... Show MoreThis study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.
The AlAdhaim Dam is located 133 kilometers northeast of Baghdad. It is a multipurpose dam and joints the Iraqi dam system in 2000. It has a storage capacity of 1.5 billion m3. The dam has an ogee spillway with a length of 562 m, a crest level of 131.5 m.a.m.s.l. and a maximum discharge capacity of 1150 m3/s at its maximum storage height of 143 m.a.m.s.l. This research aimed to investigate the hydrodynamics performance of the spillway and the stilling basin of AlAdhiam Dam by using numerical simulation models under gated situations. It was suggested to modify the dam capacity by increasing the dam's storage capacity by installing gates on the crest of the dam spillway. The FLUENT program was used to
... Show MoreBackground: Post-partum depression (PPD) is a form of postnatal depression that affects mothers. Clinical manifestations usually appear within six months after delivery. Risk factors that influence the severity of post-partum depression are not fully known in the Iraqi population.
Objectives: We aim to evaluate the risk factors and identify potential predictors that may influence the symptom levels (severity) of post-partum depression among Iraqi women from Baghdad.
Subjects and Methods: The current study is cross-sectional, and we used the Edinburgh Postnatal Depression Scale (EPDS) and a cut-off value of 13 to differentiate patients into two those with lower symptom levels (LSL) and higher symptom levels (HSL). We also explored p
A statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion c
The ground state proton, neutron, and matter density distributions and corresponding root-mean-square (rms) of P19PC exotic nucleus are studied in terms of two-frequency shell model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bRcoreR and bRhaloR. According to this model, the core nucleons of P18PC nucleus are assumed to move in the model space of spsdpf. The shell model calculations are carried out for core nucleons with w)20(+ truncations using the realistic WBPinteraction. The outer (halo) neutron in P19PC is assumed to move in the pure 2sR1/2R-orbit. The halo structure in P19PC is confirmed with 2sR1/2R-dominant configuration.Elastic electr
... Show MoreThe main problem of the current study concentrates on applying critical discourse analysis to examine textual, discoursal and social features of reduplication in some selected English newspaper headlines. The main aim of the current study is to analyze the linguistic features of reduplication by adopting Fairclough's three-dimensional model (2001). This study sets forth the following hypotheses: (1) English headline – newspapers comprise various textual, discoursal and social features ;(2)the model of analysis is best suited for the current study.To achieve the aims and verify the hypotheses, a critical discourse analysis approach is used represented by Fairclough's socio-cultural approach (2001).The present study has examined the use of
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More