Objective: To identify the role and importance of the clinical pharmacist in the Emergency Department on prevent
or reduced the medication error.
Methodology: We collected the medical file of 3400 patients, 1400 patient's file in (A) hospital, and 1000 patient's
file in each of (B and C) hospital, who admitted to the ED, at primary weekdays between 8 am to 2 pm, and
recorded all the intervention made by clinical pharmacist through an active search in clinical charts, with analysis
of the daily medical prescription. The potential severity of harm of the medication error judged by two reviewers,
a permanent emergency physician, and clinical pharmacist based on the National Coordinating Council (NCC) of
Medication Error Reporting and Prevention error classification system.
Results: Four of intervention that have the greatest incidence which represent the majority of the cases, and they
were related to: dosage 500 (38.7%), route of administration 300 (23.2%), frequency 100 (7.7%), and
incompatibility 120 (9.3%). The severity of medication errors that was judged as potentially life threatening (67;
5.1%), serious (135; 10.4%), significant (634; 49.1%), and insignificant (454; 35.1%). The acceptance to the
presence and intervention of pharmacist was as follow: senior physicians 75%, permanent physicians 20%, resident
physicians 77%, and nurses 30%.
Recommendation: Hospitals should contemplate assigning well-trained knowledgeable, efficient and skilled ED
clinical pharmacists to prospectively review medication orders whenever clinically possible. It is also recommended
that each hospital performs acquainted analysis of medication errors occurring in its ED, in order to determine
their origin and then establish the necessary ED-based clinical pharmacy services. The sets of actions needed to
provide such services, as well as the skills, which their ED pharmacists must possess or acquire in order to be
capable of producing desired outcomes
New ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures
New Schiff base ligand (E)-6-(2-(4-(dimethylamino)benzylideneamino)-2-(4-hydroxyphenyl)acetamido)-3,3- dimethyl-7-oxo-4-thia-1- azabicyclo[3.2.0]heptane-2-carboxylic acid = (HL) was synthesized via condensation of Amoxicillin and 4(dimethylamino)benzaldehyde in methanol. Figure -1 Polydentate mixed ligand complexes were obtained from 1:1:2 molar ratio reactions with metal ions and HL, 2NA on reaction with MCl2 .nH2O salt yields complexes corresponding to the formulas [M(L)(NA)2Cl],where M=Fe(II),Co(II),Ni(II),Cu(II),and Zn(II), A=nicotinamide .
In :the _pr sent _paper we report ths. ynthesis ·of a new li:ga!!d..
[f4LJ [{'2 {1-'[(2-hyd•:0xy-.ben:zy1i.den·e)..,bxcJrazanci}:etby-l }benzerieÂ
J,5 t;rtiol .aad its complexes ·w-ith '('Mlif(1 J Fev 1 ), ed(J'l), and. :f.::I:g 01>-)
The ligand \VS preP..ated rin tWo steps' • fp I t}Je nrst stea -soJutiQil Qf
-saUcyla[deeyeq. ip methatt:oJ . re3ctcd lU1der reflux
... Show MoreEight different Dichloro(bis{2-[1-(4-R-phenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})iron(II) compounds, 2–9, have been synthesised and characterised, where group R=CH3 (L2), OCH3 (L3), COOH (L4), F (L5), Cl (L6), CN (L7), H (L8) and CF3 (L9). The single crystal X-ray structure was determined for the L3 which was complemented with Density Functional Theory calculations for all complexes. The structure exhibits a distorted octahedral geometry, with the two triazole ligands coordinated to the iron centre positioned in the equatorial plane and the two chloro atoms in the axial positions. The values of the FeII/III redox couple, observed at ca. −0.3 V versus Fc/ Fc+ for complexes 2–9, varied over a very small potential range of 0.05 V.
... Show MoreThe eaction of 2 4 .6-trihydroxyactophenonemonohydra1e with
l hydr.azine monohydrate was realized ti·nder reflu.(( in methanol and i:l.
Jew drops of glacial acetic acid we.re added to give lhe'(int rmediate)
2-(1hydr pno-ctbyt)-benzcne-·1.3.5-r:Qql, which reacted wittl
saEcy.laldehyde. jn methm)ql to gjy;e 'a new :tyRe CNzOi) Ligand (H:flL]
f(2-{1-[(2-=bydroxy-bertzylide·ne)-bydrazqoo,J-e·thy.1}bcnze·neJ ;3·,5
|
The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More