Objective: The study aims to determine the effectiveness of the continuing nursing education
program on nursing staffs knowledge in kidney transplantation unit and to find out the relationship
between nursing staffs knowledge and demographic characteristics (age, gender, education level, and
years of experiences in kidney transplantation unit).
Methodology: A quasiexperemental design (One-group Pretest - Posttest design) was carried out in
kidney transplantation units at Baghdad Teaching Hospitals, from December 2011 to July 2012. A nonprobability
(purposive sample) of (16) nurses were selected from kidney transplant units at Baghdad
teaching hospitals, the choice was based on the study criteria. The data were collected through the
use of constructed questionnaire and consist from two major parts, part one consist of demographic
characteristics contain (9) and part two consist of (58) items of a multiple choice questions
distributed in (8) major sections. Validity of the instrument was determined through a panel of (8)
experts, and reliability through a pilot study. The data were analyzed through the application of
descriptive and inferential statistical analysis procedures.
Results: The findings of the present study indicate that the continuing nursing education program
was effective on knowledge improvement of the participant’s nurses. The total percent of the
improvements resulted by the effects of applying the continuing nursing education program was
(43.31%). And there was a non-significant relationship between nurse’s knowledge and demographic
characteristics (age, gender, education level, and years of experiences in kidney transplantation unit).
Recommendation: Based on the result of the present study the researcher recommends to carrying
out additional studies on application of nursing education programs about nurses practice on kidney
transplantation in kidney transplant units, and nurses should be encouraged to participate in
continuing education programs and training sessions about kidney transplantation.
This paper presents the design and analysis of composite right left hand (CRLH) electromagnetic bandgap (EBG) structure. The proposed unit cell is consistent of a dielectric substrate with dimensions of 5×5×1 mm 3 made of FR4-Epoxy with εr = 4.4 underneath of a conductive patch with dimensions of 4.4×4.4mm 2 . The unit cell is structured to perform a negative permittivity (ε) and negative permeability (µ) in different bands. The proposed unit cell is developed to 5G systems in the sub-6GHz bands. In this work, a complete analysis of the unit cell in terms of Sparameters, constitutive parameters and refraction index are evaluated using HFSS simulation package based on Finite Element Method (FEM).
This study aims to derive a general relation between line loads that acting on two-way slab system and the equivalent uniformly distributed loads. This relation will be so useful to structural designer that are used to working with a uniformly distributed load and enable them to use the traditional methods for analysis of two-way systems (e.g. Direct Design Method). Two types of slab systems, Slab System with Beams and Flat Slab Systems, have been considered in this study to include the effect of aspect ratio and type of slab on the proposed relation. Five aspect ratios, l2/l1 of 0.5, 0.75, 1.0, 1.5 and 2.0, have been considered for both types of two-way systems.
All necessary finite element analyses have been executed with SAFE Soft
Thermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
The antibacterial effect of (Eruca sativa) extract was evaluated by an in vitro study testing the growth of various Gram-Positive and Gram-Negative bacteria . The bactericidal activity of this extract was analyzed by serial dilution in tubes. This study,found that Gram-Negative and Gram-Positive bacteria susceptible to very low eruca concentrations. On the other hand, Gram-positive bacteria were more susceptible than Gram-negative bacteria, the minimal bactericidal concentration of Gram-positive bacteria was 5 mg ml-1 but minimal bactericidal concentration of Gram-negative bacteria was 10 mg ml-1 that mean duble inhibation concentration of Gram-positive bacteria . this study suggest that Eruca sativa leaves have inhibation effect on Gra
... Show MoreStructural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
Electrical properties were studied for Pectin/PVA graphene composites films and the effect of aqueous interaction on their properties. The conductivity and the dielectric constant of this composite are important because Polysaccharide like pectin is increasingly being used in biomedical applications and as nanoparticles coating materials. The Dielectric and conductivity of composite films were compared in dry and wet condition the differences in the results were attributed to the water molecules and the hydrogen bond which connect the three composite compounds (Pectin, PVA and Graphene) together. These connections were allowed the hydrogen and hydroxyl group’s migrations in the composite super molecules. On the other hand, graphene was pr
... Show MoreThis paper details the process of designing, analysing, manufacturing, and testing an integrated solid-state hydrogen storage system. Analysis is performed to optimise flow distribution and pressure drop through the channels, and experimental investigations compare the effects of profile shape on the overall power output from the fuel cell. The storing of hydrogen is given much attention in the selection of a storage medium, and the effect of a cooling system to reduce the recharging time of the hydrogen storage vessel. The PTFE seal performed excellently, holding pressure over 60 bar, despite requiring changing each time the cell is opened. The assembly of the vessel was simple and straightforward, and there was no indication of pressure
... Show MoreThis paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle c
... Show More