Objective: The study aims to determine the effectiveness of the continuing nursing education
program on nursing staffs knowledge in kidney transplantation unit and to find out the relationship
between nursing staffs knowledge and demographic characteristics (age, gender, education level, and
years of experiences in kidney transplantation unit).
Methodology: A quasiexperemental design (One-group Pretest - Posttest design) was carried out in
kidney transplantation units at Baghdad Teaching Hospitals, from December 2011 to July 2012. A nonprobability
(purposive sample) of (16) nurses were selected from kidney transplant units at Baghdad
teaching hospitals, the choice was based on the study criteria. The data were collected through the
use of constructed questionnaire and consist from two major parts, part one consist of demographic
characteristics contain (9) and part two consist of (58) items of a multiple choice questions
distributed in (8) major sections. Validity of the instrument was determined through a panel of (8)
experts, and reliability through a pilot study. The data were analyzed through the application of
descriptive and inferential statistical analysis procedures.
Results: The findings of the present study indicate that the continuing nursing education program
was effective on knowledge improvement of the participant’s nurses. The total percent of the
improvements resulted by the effects of applying the continuing nursing education program was
(43.31%). And there was a non-significant relationship between nurse’s knowledge and demographic
characteristics (age, gender, education level, and years of experiences in kidney transplantation unit).
Recommendation: Based on the result of the present study the researcher recommends to carrying
out additional studies on application of nursing education programs about nurses practice on kidney
transplantation in kidney transplant units, and nurses should be encouraged to participate in
continuing education programs and training sessions about kidney transplantation.
The analysis of Iraqi light oil (light naphtha) by capillary gas chromatography- mass spectrometry (GC-MS) was performed by the injection of whole naphtha sample without use of solvents. Qualitative analysis and the identification of the hydrocarbon constituents of light naphtha was performed and comparison had been done with American light oil (light naphtha). The obtained results showed a major difference between the two-light naphtha.
Polyaromatic hydrocarbons (PAHs) are a group of aromatic compounds that contain at least two rings. These compounds are found naturally in petroleum products and are considered the most prevalent pollutants in the environment. The lack of microorganism capable of degrading some PAHs led to their accumulation in the environment which usually causes major health problems as many of these compounds are known carcinogens. Xanthene is one of the small PAHs which has three rings. Many xanthene derivatives are useful dyes that are used for dyeing wood and cosmetic articles. However, several studies have illustrated that these compounds have toxic and carcinogenic effects. The first step of the bacterial degradation of xanthene is conducted by d
... Show Moreالتعددية السياسية بين الرفلض والقبول دراسة نظرية لأبرز الاتجاهات الاسلامية المعاصرة
The insulation system of a machine coil includes several layers made of materials with different characteristics. The effective insulation design of machine coils, especially in the machine end winding, depends upon an accurate model of the stress grading system. This paper proposes a modeling approach to predict the transient overvoltage, electric field, and heat generation in machine coils with a stress grading system, considering the variation of physical properties in the insulation layers. A non-uniform line model is used to divide the coil in different segments based on material properties and lengths: overhang, stress grading and slot. The cascaded connection of chain matrices is used to connect segments for the representation of the
... Show MoreAbstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and G
... Show MoreBiodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More