A descriptive study, which was using an assessment approach, was conducted for the
determination of the impact of rheumatoid arthritis and osteoarthritis patient’s functional disability
upon their life style. The study was carried out at the Rheumatology and outpatients clinics of ALKarama
Teaching Hospital, Baghdad Teaching Hospital AL-Kindey Teaching Hospital and Specialized
surgeries Teaching Hospital for the period of October 15th 2003 through May 13th 2004 in Baghdad
City. A purposive (non-probability) sample of (245) arthritis patients which was comprised (111)
rheumatoid arthritis patients and (134) osteoarthritis patients, was selected out of the early stated
settings. The questionnaire was comprised of two main parts. Part one dealing with
sociodemographical data like (age, sex, marital status, education level) and part two was including
lifestyle domains of physical, occupation, social, environmental emotional and spiritual.
The findings of the study presented that these patients functional disability had great impact
upon their lifestyle with regard to their daily living activities, such as dressing, cleaning, walking and
working, as well as the domains of family interaction, environmental interaction and emotional
disorders. The study recommended that well designed and structured health education program can be
presented to these patients with respect to preventive, curative and rehabilitative issues by which
complications can be reduced and health status can be promoted and maintained through the exercise
program, drugs montoring and follow-up and patients education about the disease and drugs side
effects.
<p>The directing of a wheeled robot in an unknown moving environment with physical barriers is a difficult proposition. In particular, having an optimal or near-optimal path that avoids obstacles is a major challenge. In this paper, a modified neuro-controller mechanism is proposed for controlling the movement of an indoor mobile robot. The proposed mechanism is based on the design of a modified Elman neural network (MENN) with an effective element aware gate (MEEG) as the neuro-controller. This controller is updated to overcome the rigid and dynamic barriers in the indoor area. The proposed controller is implemented with a mobile robot known as Khepera IV in a practical manner. The practical results demonstrate that the propo
... Show MoreIn this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
Samples (4th) reviewed are deposited and stored in the Iraqi Natural History Museum (INHM), and there are 4th of them. Sciurus anomalous (Güldenstädt, 1785) species are preserved and mummified. It is a Caucasian squirrel (S. anomalus) that was medium in size, with a grayish-to-chestnut color, a golden gray back, and a golden tail. It is found in the forests of East and Southeast Asia. The variety possessed for the study was previously registered in the vertebrate literature by several authors and was stored by scientific methods in the museum. As a result of the multiplication and growth of these species, and to know the environmental changes that occurred in them, they were compared with models and samples found throughout Iraq
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreContours extraction from two dimensional echocardiographic images has been a challenge in digital image processing. This is essentially due to the heavy noise, poor quality of these images and some artifacts like papillary muscles, intra-cavity structures as chordate, and valves that can interfere with the endocardial border tracking. In this paper, we will present a technique to extract the contours of heart boundaries from a sequence of echocardiographic images, where it started with pre-processing to reduce noise and produce better image quality. By pre-processing the images, the unclear edges are avoided, and we can get an accurate detection of both heart boundary and movement of heart valves.