Objective(s): In the present study, glycerin is used as a substitute for tin-foil and cold mold seal (Alginate mould seal)
in the process of curing heat and cold-cure acrylic resin denture base against stone and plaster.
Methodology: 60 specimens were prepared from heat-cure acrylic resin and cold-cure acrylic resin denture base. The
study includes 12 groups of specimens depending on the type of processing, investment material and type of
separating medium that are used in curing process. Each group of them contains 5 specimens for each test.
Some of physical properties of the processed acrylic denture base that (water sorption and solubility) have been
compared with those processed using tin-foil and tin-foil substitute.
Results: The results have shown that tin-foil is still the best separating medium that is used due to the best properties
obtained when using tin-foil as a separating medium, while no significant differences have been observed between
glycerin and cold mold seal specimens in respect to water sorption and solubility of the testing groups.
Recommendations: that glycerin can be considered as a satisfactory separating medium for both heat and cold-cured
acrylic denture base resins, especially because it is easy to get, easy to use and cheap.
Effect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained
... Show MoreReactive Powder Concrete (RPC) is one of the most advanced recent high compressive strength concrete. This work explored the effects of using glass waste as a fractional replacement for fine aggregate in reactive powder concrete at levels of 0%, 25%, 50%, and 100%. Linear and mass attenuation coefficients have been calculated as a function of the sample's thickness and bremsstrahlung energy. These coefficients were obtained using energy selective scintillation response to bremsstrahlung having an energy ranging from (0.1-1.1) MeV. In addition, the half-value thickness of the samples prepared has been investigated. It was found that there is a reversal association between the attenuation coefficient and the energy of the bremsstrahlu
... Show MoreThe transition structure is considered as the most important hydraulic structure controlling the w/s transtion, morever it decrease the scouring of outlet structure.
seven experiment samples for transition structure was used in this research at different angles ( 10° - 90° ).
It was shown that froud number has a clear effect on the depth of the scouring, morever the high discharge rates cause an increase of the ratio between the length of the scour and its depth.
In order to select the best flaring angle it was shown that the angle of 40° has the most discharge rate, least structure length and least angle scour depth, with the firmly of t
... Show MoreThe study aimed to know the effect of the use alcoholic ethanol extraction of Boswellia Carterii In prolonging the period of preservation cooled ground meat in 4C for 6 days, it has been mixing ground meat with 150,300,450 mg/ml of alcoholic extract Consecutive, Where (0 was the control sample), All samples were stored separately for 0 , 3 , 6 days in Refrigerator temperature 4 C, Conducted by some microbial tests, Results have shown that mixing the ground meat with Boswellia Carterii extraction Led to prolong the storage of meat for 6 days at 4 C .and the Best result came when adding alcoholic ethanol extract of Boswellia Carterii by 450mg/ml Which Equal 0.9 g ,that reducing microbial load more higher than 150&300 mg/ml. All of thes
... Show More
... Show More