Objective(s): The study aims to assess the early detection of early detection of first degree relatives to type-II
diabetes mellitus throughout the diagnostic tests of Glycated Hemoglobin A1C. (HgbA1C), Oral Glucose Tolerance
Test (OGTT) and to find out the relationship between demographic data and early detection of first degree
relatives to type-II diabetes mellitus.
Methodology: A purposive "non-probability" sample of (200) subjects first degree relatives to type-II diabetes
mellitus was selected from National Center for Diabetes Mellitus/Al-Mustansria University and Specialist Center
for Diabetes Mellitus and Endocrine Diseases/Al-kindy. These related persons have presented the age of (40-70)
years old. A questionnaire was constructed for the purpose of the study, it is composed of (3) major parts, and
overall items, which are included in the questionnaire are (76) items. Reliability and validity of the questionnaire
were determined through a pilot study which is carried out during the period of August, 1
st
, 2008 to February, 30th
2009. The study instrument and structured interview technique were used as means of data collection. The data
were analyzed through the application of the descriptive statistical data analysis approach (Frequency and
Percentage) and the inferential statistical data analysis approach Chi-square, Pearson correlation coefficient.
Results: The results of the study confirmed that the mean of age is (55.7) year, and the majority of the sample are
male, first degree relatives with diabetes mellitus type-II are within positive bio-social aspect and laboratory
screening had an effect on the incidence of diabetes mellitus type-II for first degree relatives to type-II diabetes
mellitus.
Recommendations: The study recommends that the number of diabetes centers should be increased in Baghdad
and Governorates, promote of HbA1c test from general hospitals laboratories, guide notebook about the
predisposing factors of diabetes mellitus in his family, periodic screening for pre-diabetes and diabetes in high risk,
asymptomatic, undiagnosed adults within the health care setting, prevention program to prevent and control on
the predisposing risk factors for nondependent diabetes mellitus type-II and complication
This study is carried out to investigate the prevalence of Coxiella burnetii (C. burnetii) infections in cattle using an enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assay targeting IS1111A transposase gene. A total of 130 lactating cows were randomly selected from different areas in Wasit province, Iraq and subjected to blood and milk sampling during the period extended between November 2018 and May 2019. ELISA and PCR tests revealed that 16.15% and 10% of the animals studied were respectively positive. Significant correlations (P<0.05) were detected between the positive results and clinical data. Two positive PCR products were analyzed phylogenetically, named as C. burnetii IQ-No.5 and C. burnet
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show More The present study is an attempt for detection of A. baumannii by conventional and PCR methods using species-specific primers for these A. baumannii. A total of 87 samples were collected from hospitals in Baghdad (Al-Rasafa and Al-Karkh Hospitals) during the period from 2019 to 2020.The samples included: 40 specimens, from wounds, respiratory infections (sputum), burns, CSF and 47 samples from the hospital environment (swabs), while samples collected from intensive care unit including patient beds, surgical instruments and appliances, emergency lobby and baby incubators. A. baumannii isolate identification depending on the morphologic characteristics on the culture media including, blood agar, MacConkey agar, as well as t
... Show MoreLymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreThe Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr
... Show MorePersistence of antibiotics in the aquatic environment has raised concerns regarding their potential influence on potable water quality and human health. This study analyzes the presence of antibiotics in potable water from two treatment plants in Baghdad City. The collected samples were separated using a solid-phase extraction method with hydrophilic-lipophilic balance (HLB) cartridge before being analyzed. The detected antibiotics in the raw and finished drinking water were analyzed and assessed using high-performance liquid chromatography (HPLC), with fluorometric detector and UV detector. The results confirmed that different antibiotics including fluoroquinolones and
يسعى البحث إلى الاهتمام بإحدى الوظائف المهمة في إدارة الموارد البشرية وهي تقويم الأداء التي تواجه مجموعة من الانتقادات والآراء السلبية، اذ ظهر في الأّونة الأخيرة أنموذج جديد يمكن إن يتجاوز تلك السلبيات وهو أنموذج التغذية العكسية المتعدد المصادر درجة .وقد حاول الباحثان توظيف هذا المفهوم في اثنتين من المنظمات العامة العراقية هما (دائرة كهرباء الوسط) التابعة لوزارة الكهرباء
و (دائرة الماء والمجاري) ال