Objective(s): The study aims to assess the early detection of early detection of first degree relatives to type-II
diabetes mellitus throughout the diagnostic tests of Glycated Hemoglobin A1C. (HgbA1C), Oral Glucose Tolerance
Test (OGTT) and to find out the relationship between demographic data and early detection of first degree
relatives to type-II diabetes mellitus.
Methodology: A purposive "non-probability" sample of (200) subjects first degree relatives to type-II diabetes
mellitus was selected from National Center for Diabetes Mellitus/Al-Mustansria University and Specialist Center
for Diabetes Mellitus and Endocrine Diseases/Al-kindy. These related persons have presented the age of (40-70)
years old. A questionnaire was constructed for the purpose of the study, it is composed of (3) major parts, and
overall items, which are included in the questionnaire are (76) items. Reliability and validity of the questionnaire
were determined through a pilot study which is carried out during the period of August, 1
st
, 2008 to February, 30th
2009. The study instrument and structured interview technique were used as means of data collection. The data
were analyzed through the application of the descriptive statistical data analysis approach (Frequency and
Percentage) and the inferential statistical data analysis approach Chi-square, Pearson correlation coefficient.
Results: The results of the study confirmed that the mean of age is (55.7) year, and the majority of the sample are
male, first degree relatives with diabetes mellitus type-II are within positive bio-social aspect and laboratory
screening had an effect on the incidence of diabetes mellitus type-II for first degree relatives to type-II diabetes
mellitus.
Recommendations: The study recommends that the number of diabetes centers should be increased in Baghdad
and Governorates, promote of HbA1c test from general hospitals laboratories, guide notebook about the
predisposing factors of diabetes mellitus in his family, periodic screening for pre-diabetes and diabetes in high risk,
asymptomatic, undiagnosed adults within the health care setting, prevention program to prevent and control on
the predisposing risk factors for nondependent diabetes mellitus type-II and complication
In recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny edge detection
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreIn order to scrutinize the impact of the decoration of Sc upon the sensing performance of an XN nanotube (X = Al or Ga, and XNNT) in detecting sarin (SN), the density functionals M06-2X, τ-HCTHhyb, and B3LYP were utilized. The interaction of the pristine XNNT with SN was a physical adsorption with the sensing response (SR) of approximately 5.4. Decoration of the Sc metal into the surface of the AlN and GaN led to an increase in the adsorption energy of SN from −3.4 to −18.9, and −3.8 to −20.1 kcal/mol, respectively. Also, there was a significant increase in the corresponding SR to 38.0 and 100.5, the sensitivity of metal decorated XNNT (metal@XNNT) is increased. So, we found that Sc-decorating more increases the sensitivity of GaNN
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreA total of 54 abu mullet Planiliza abu (Heckel, 1843) were collected from two stations (north and south stations) along the Euphrates River near Samawa City, Al-Muthanna province and were examined during the period from October 2016 till September 2017 for parasites. Six out of 35 examined fishes from the north station (17.1%) and one out of 19 examined fishes (5.3%) from south station were infected with the microcotylid Solostamenides paucitesticulatus Kritsky & Öktener, 2015. The parasite was illustrated and described, and it is considered as a new record for the parasitic fauna of fishes of Iraq.
In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.