Let S be an inverse semiring, and U be an ideal of S. In this paper, we introduce the concept of U-S Jordan homomorphism of inverse semirings, and extend the result of Herstein on Jordan homomorphisms in inverse semirings.
One of the important differences between multiwavelets and scalar wavelets is that each channel in the filter bank has a vector-valued input and a vector-valued output. A scalar-valued input signal must somehow be converted into a suitable vector-valued signal. This conversion is called preprocessing. Preprocessing is a mapping process which is done by a prefilter. A postfilter just does the opposite.
The most obvious way to get two input rows from a given signal is to repeat the signal. Two rows go into the multifilter bank. This procedure is called “Repeated Row” which introduces oversampling of the data by a factor of 2.
For data compression, where one is trying to find compact transform representations for a
... Show MoreIn this paper we investigated some new properties of π-Armendariz rings and studied the relationships between π-Armendariz rings and central Armendariz rings, nil-Armendariz rings, semicommutative rings, skew Armendariz rings, α-compatible rings and others. We proved that if R is a central Armendariz, then R is π-Armendariz ring. Also we explained how skew Armendariz rings can be ?-Armendariz, for that we proved that if R is a skew Armendariz π-compatible ring, then R is π-Armendariz. Examples are given to illustrate the relations between concepts.
Let R be a prime ring and δ a right (σ,τ)-derivation on R. In the present paper we will prove the following results:
First, suppose that R is a prime ring and I a non-zero ideal of R if δ acts as a homomorphism on I then δ=0 on R, and if δ acts an anti- homomorphism on I then either δ=0 on R or R is commutative.
Second, suppose that R is 2-torsion-free prime ring and J a non-zero Jordan ideal and a subring of R, if δ acts as a homomorphism on J then δ=0 on J, and if δ acts an anti- homomorphism on J then either δ=0 on J or J
Z(R).
In this paper extensive examples and related counterexamples of the category of -skew -Armendariz rings are given. This category of rings regards a new generalization for the concepts of -skew Armendariz and skew -Armendariz rings. A ring is called -skew -Armendariz if for any ( ) Σ and ( ) Σ such that ( ) ( ) ( ), then ( ) ( ) for each and . First some general properties of -skew -Armendariz rings are studied and then relations between -skew -Armendariz rings and other related rings are investigated. Also various examples of non -skew -Armendariz rings are established.
This paper describes a number of new interleaving strategies based on the golden section. The new interleavers are called golden relative prime interleavers, golden interleavers, and dithered golden interleavers. The latter two approaches involve sorting a real-valued vector derived from the golden section. Random and so-called “spread” interleavers are also considered. Turbo-code performance results are presented and compared for the various interleaving strategies. Of the interleavers considered, the dithered golden interleaver typically provides the best performance, especially for low code rates and large block sizes. The golden relative prime interleaver is shown to work surprisingly well for high puncture rates. These interleav
... Show MoreIn this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
Heterocyclic compounds are crucial for medicinal chemistry and the development of therapeutic agents like broad-spectrum antibiotics. This study devised a facile procedure to synthesize novel antimicrobial bicyclic heterocycles from 2-mercapto-3-phenylquinazolin-4(3H)-one. Advanced analytical techniques including 1 H and 13C NMR, elemental analysis, and FT-IR spectroscopy characterized the intricate chemical structures of the products. In vitro assays tested the heterocycles against aerobic and anaerobic bacterial strains using fluconazole and ciprofloxacin as antifungal and antibacterial controls. Results demonstrated the formidable broad-spectrum antibacterial and antifungal activities of the synthesized compounds, with growth inhibition
... Show MoreThis paper presents a numerical solution to the inverse problem consisting of recovering time-dependent thermal conductivity and heat source coefficients in the one-dimensional parabolic heat equation. This mathematical formulation ensures that the inverse problem has a unique solution. However, the problem is still ill-posed since small errors in the input data lead to a drastic amount of errors in the output coefficients. The finite difference method with the Crank-Nicolson scheme is adopted as a direct solver of the problem in a fixed domain. The inverse problem is solved sub
... Show MoreIn this article, an attempt has been made to introduce the concept of Neutrosophic d-Filter and Neutrosophic Prime d-Filter of d-Algebra by generalizing the notion of Intuitionistic Fuzzy d-Filter of d-Algebra. Besides, we establish different properties of them. Further, we study several relations on this notion from the point of view of Neutrosophic d-Algebra.