Klebseilla pneumoniae possesses many virulence factors and survival strategies to persist and overcome host defenses; one of these strategies is biofilm formation. Therefore, the aims of this study was to determine the antibacterial and antibiofilm effect of Rosmarinus officinelis L. essential oil (EO) and its effect on the genes encoding of fimbrial adhesions. The antimicrobial activity was investigated by MIC. The ability to form biofilm as well as inhibition of initial cell attachment and biofilm formation was performed. PCR was carried out to detect fimH-1 and mrkD genes of type 1 and type 3 fimbrial adhesions at different time of incubation. The study revealed that MIC value of EO was 104 μg/ml on 24 (83%) of isolates, 93% of them produced biofilm. Fifty percent reduction in biofilm formation was observed in 10% of isolates at concentration 104 μg/ml and increased to 45% when used 1.5×104 μg/ml of EO. PCR product of fimH-1 was detected at 24 h but absence at 0 and 4 h while mrkD product found in all incubation time. In conclusion, Rosemary EO had antibacterial and antibiofilm activity against Klebsiella pneumoniae. Moreover, it affected the type 1 fimbriae at gene level probably by mutation during initial attachment of biofilm formation.
The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1 , and , 2 which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an
The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1 , and , 2 which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an
In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria