The ionospheric characteristics exhibit significant variations with the solar cycle, geomagnetic conditions, seasons, latitudes and even local time. Representation of this research focused on global distribution of electron (Te) and ion temperatures (Ti) during great and severe geomagnetic storms (GMS), their daily and seasonally variation for years (2001-2013), variations of electron and ion temperature during GMS with plasma velocity and geographic latitudes. Finally comparison between observed and predicted Te and Ti get from IRI model during the two kinds of storm selected. Data from satellite Defense Meteorological Satellite Program (DMSP) 850 km altitude are taken for Te, Ti and plasma velocity for different latitudes during great and severe geomagnetic storms from years 2001 to 2013 according to what is available appeared that there is 22 events for severe and great geomagnetic storms happened during years 2001-2005 only from years selected, from maximum solar cycle 23. From data analysis, in general the temperature of the electron is greater than the temperature of the ion, but there are some disturbances happened during the storm time, in the day there is fluctuation in values of Te and Ti with the value of Ti greater than Te. Through the Dst index, Te and Ti do not depend on the strength of the geomagnetic storm. Plasma velocity variation shows the same profile of Te and Ti variation during the storm time and there is a linear relation between (Te) & (Ti) and plasma velocity. The variation of electron and ion temperature with geographic latitude during severe and great storms appears that as the latitude increases the temperature of ions increases reaches its maximum value approximately 80000K at poles.
From comparing the predicted Te and Ti values calculating from IRI model during the great and severe storms with observed values, it’s found that the predicted values from IRI model much less than the observed values and the variation was nonlinear along 24 hours, from this we can conclude that the model must be corrected for Te and Ti for these two kinds of storms.
The ZnTe alloy was prepared as deposited thin films on the glass substrates at a thickness of 400±20 nm using vacuum evaporation technique at pressure (1 × 10-5) mbar and room temperature. Then the thin films under vacuum (2 × 10-3 mbar) were annealing at (RT,100 and 300) °C for one hour. The structural properties were studied by using X-ray diffraction and AFM, the results show that the thin films had approached the single crystalline in the direction (111) as preferred orientation of the structure zinc-blende for cubic type, with small peaks of tellurium (Te) element for all prepared thin films. The calculated crystallite size (Cs) decreased with the increase in the anne
... Show MoreBearing capacity of a concrete pile in fine grained cohesive soils is affected by the degree of saturation of the surrounding soil through the contribution of the matric suction. In addition, the embedded depth and the roughness of the concrete pile surface (expressed as British Pendulum Number BPN) also have their contribution to the shear strength of the concrete pile, consequently its bearing capacity. Herein, relationships among degree of saturation, pile depth, and surface roughness, were proposed as a mathematical model expressed as an equation where the shear strength of a pile can be predicted in terms of degree of saturation, depth, and BPN. Rel
... Show Moreاثناء تفاعل الديزنة تكونت صبغة أزو جديدة عن طريق تفاعل 3-امينوفينول مع 2,4,6-ثلاثي هيدروكسي اسيتوفينون . ثم تم تفاعل هذا الليكاند مع بعض ايونات العناصر الكروم والحديد الروديوم والروثينيوم بتكفؤهم الثلاثي والكوبلت الثنائي والموليبدينوم سداسي التكافؤ مكونة معقدات فلزية مختلفة بأشكال هندسية متعددة. تم ملاحظة تناسق مجموعة الازو مع ايونات العناصر من خلال ملاحظة ظهور حزم امتصاص الفلز مع النتروجين والاوكسجين ب
... Show MoreA thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.
The quantum chromodynamics theory approach was taken to study the photonic emission from interaction of quark gluon at high at Bremsstrahlung processes. Strength coupling, quark charge 𝑒𝑞 , flavor number 𝑛𝐹 , thermal energy T of system, fugacity of gluon ƛ𝑔, fugacity of quark ƛ𝑞 , critical temperature 𝑇𝐶 and photons energy 𝐸 are taken to calculate photons rate via the quantum system. Photons emission rate studies and calculates via high energy 400MeV to 650 MeV using flavor number 3 and 7 for 𝑢̅𝑔 → 𝑑̅𝑔𝛾 and 𝑐𝑔 → 𝑠𝑔𝛾 systems at bremsstrahlung processes with critical temperature (𝑇𝑐 = 190 and 196) MeV with photons energy (1-10) GeV. The confinement and de-confineme
... Show MoreObliquely deposited (70o) Bi, Sb, and Bi-Sb alloy thin films have been prepared by thermal
resistive technique. Structural properties of these films were studied using XRD. Their resistance and
voltage responsivity for Nd:YAG and CO2 laser pulses have been recorded as function of operating
temperature between 10 oC and 120 oC. It was found that the maximum responsivity for these detectors
can be obtained at 75 oC. On the other hand, the dependence of responsivity on the width of detectors was
investigated.
The optical energy gap(Eopt) and the width of the tails of localized states in the band gap (?E) for Se:2%Sb thin films prepared by thermal co-evaporation method as a function of annealing temperature are studied in the photon energy range ( 1 to 5.4)eV.Se2%Sb film was found to be indirect transition with energy gap of (1.973,2.077, 2.096, 2.17) eV at annealing temperature (295,370,445,520)K respectively. The Eopt and ?E of Se:2%Sb films as a function of annealing temperature showed an increase in Eopt and a decrease in ?E with increasing the annealing temperature. This behavior may be related to structural defects and dangling bonds.
The V2O5 films were deposited on glass substrates which produce using "radio frequency (RF)"power supply and Argon gas technique. The optical properties were investigated by, UV spectroscopy at "radio frequency" (RF) power ranging from 75 - 150 Watt and gas pressure, (0.03, 0.05 and 0.007 Torr), and substrate temperature (359, 373,473 and 573) K. The UV-Visible analysis shows that the average transmittance of all films in the range 40-65 %. When the thickness has been increased the transhumance was decreased from (65-40) %. The values of energy band gap were lowered from (3.02-2.9 eV) with the increase of thickness the films in relation to an increase in power, The energy gap decreased (2.8 - 2.7) eV with an increase in the pressure and
... Show MoreThe aim of this work is to evaluate the one- electron expectation value from the radial electronic density function D(r1) for different wave function for the 2S state of Be atom . The wave function used were published in 1960,1974and 1993, respectavily. Using Hartree-Fock wave function as a Slater determinant has used the partitioning technique for the analysis open shell system of Be (1s22s2) state, the analyze Be atom for six-pairs electronic wave function , tow of these are for intra-shells (K,L) and the rest for inter-shells(KL) . The results are obtained numerically by using computer programs (Mathcad).
As one type of resistance furnace, the electrical tube furnace (ETF) typically experiences input noise, measurement noise, system uncertainties, unmodeled dynamics and external disturbances, which significantly degrade its temperature control performance. To provide precise, and robust temperature tracking performance for the ETF, a robust composite control (RCC) method is proposed in this paper. The overall RCC method consists of four elements: First, the mathematical model of the ETF system is deduced, then a state feedback control (SFC) is constructed. Third, a novel disturbance observer (DO) is designed to estimate the lumped disturbance with one observer parameter. Moreover, the stability of the closed loop system including controller
... Show More