Atomic Force Microscope is an efficient tool to study the topography of precipitate. A study using Continuous Flow Injection via the use of Ayah 6SX1-T-2D Solar cell CFI Analyser . It was found that Cyproheptadine –HCl form precipitates of different quality using a precipitating agent's potassium hexacyanoferrate (III) and sodium nitroprusside. The formed precipitates are collected as they are formed in the usual sequence of forming the precipitate via the continuous flow .The precipitates are collected and dried under normal atmospheric pressure. The precipitates are subjected to atomic force microscope scanning to study the variation and differences of these precipitates relating them to the kind of response to both precipitates give as. The incident light (i.e. super snow white LED) was scanned and it reveals that is , it compose of three components blue ,green and red color . The obtained spectrum were measured as a percentage area ( percentage effect ) also different models were study for the incident light irradiation of the measuring cell followed by the study of the effect on the detector area and responses .Various details and theoretical representation were adopted and were taken in to account ,the nodules (grains) on the surface were assumed to be sphere . The probability of radiation of the nodules of the surface of precipitate as the blue color and green color with the red color were 56.73% of green color , 42.12% of blue color and 1.15% of red color effect on the surface of precipitate .Granulation cumulating distribution data for both precipitates were measured also grains (nodules ) diameter were taken to concentration .
One of the most Interesting natural phenomena is clouds that have a very strong effect on the climate, weather and the earth's energy balance. Also clouds consider the key regulator for the average temperature of the plant. In this research monitoring and studying the cloud cover to know the clouds types and whether they are rainy or not rainy using visible and infrared satellite images. In order to interpret and know the types of the clouds visually without using any techniques, by comparing between the brightness and the shape of clouds in the same area for both the visible and infrared satellite images, where the differences in the contrasts of visible image are the albedo differences, while in the infrared images is the temperature d
... Show MoreRenewable energy technology is growing fast especially photovoltaic (PV) system to move the conventional electricity generation and distribution towards smart grid. However, similar to monthly electricity bill, the PV energy producers can only monitor their energy PV generation once a month. Any malfuntion in PV system components may reduce the performance of the system without notice. Thus, developing a real-time monitoring system of PV production is very crucial for early detection. In addition, electricity consumption is also important to be monitored more frequently to increase energy savings awareness among consumers. Hardware based Internet-of-Thing (IoT) monitoring and control system is widely used. However, the implementation of
... Show MoreUnderstanding, promoting, and teaching media literacy is an important societal challenge. STEM educators are increasingly looking to incorporate 21st century skills such as media literacy into core subject education. In this paper we investigate how undergraduate Computer Science (CS) students can learn media literacy as a by-product of collaborative video tutorial production. The paper presents a study of 34 third-year CS undergraduates who, as part of their learning, were each asked to produce three video tutorials on Raspberry Pi programming, using a collaborative video production tool for mobile phones (Bootlegger). We provide results of both quantitative and qualitative analysis of the production process and resulting video tutorials,
... Show MoreThe concept of forming the living space in the American strategic thought has an
important position it is regarded as an strategic movement that it supports the American
United States with the huge capabilities in its own concern that enables it to approach of
American administration , we find that of different historical periods it works to establish that
the geopolitical dimension which is accompanied with the ability of American response for
the evens that in its own turn enables the American united states to seize the growing chances
in the global strategic environment This study includes five chapters :
- Chapter one: The idea of living space.
- Chapter two: Geopolitical dimension of living space theory.
-
In this work a flowsheet has been put for the recovery of uranium and plutonium from 2.5M nitric acid solutions using 17.5% tributyl phosphate (TBP) and 2.5% trioctylamine (TOA) in kerosene diluent . The fission products (resulting from irradiated of uranium samples in nuclear research reactor) were removed from the desired actinides U & Pu .The organic phase TBP/TOA/Kerosene, containing both actinides U&Pu were stripped using 0.1 M HNO3. Trioctylamine (2.5 volume ratio ) in mesitylene , has been used in conditions appropriate for the recovery of Pu . From the experiments done using mixer- settler , the concentration of uranium in the organic phase in such conditions was very low ,not exceeding parts of a million .
The technique of integrate complimentary details from two or more input images is known as image fusion. The fusion image is more informational and will be complete more than any of the original input images. This paper Illustrates implementation and evaluation of fusion techniques used on the Satellite images a high-resolution Panchromatic (Pan) and Multispectral (MS). A new algorithm is proposed to fuse a Pan and MS of the lowresolution images based on combining IHS and Haar wavelet transform.Firstly, this paper clarifies the classical fusion by using IHS transform and Haar wavelet transform individually. Secondly proposition new strategy of combining the two methods. Performance of the proposed method is evalua
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl