Iris detection is considered as challenging image processing task. In this study efficient method was suggested to detect iris and recognition it. This method depending on seed filling algorithm and circular area detection, where the color image converted to gray image, and then the gray image is converted to binary image. The seed filling is applied of the binary image and the position of detected object binary region (ROI) is localized in term of it is center coordinates are radii (i.e., the inner and out radius). To find the localization efficiency of suggested method has been used the coefficient of variation (CV) for radius iris for evaluation. The test results indicated that is suggested method is good for the iris detection.
DeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreModification of gas chromatographic technique for the separation and determination of methyl ethoy silane compounds which were synthesized by the addition of absolute ethanol to methyl chlorosilane compounds have been elaborated experimentally. The addition of absolute dry ethanol to methyl chlorosilane compounds in the presence of a dry stream of nitrogen gas led to sweep out the liberated HCl gas. This method was found to be the suitable method for the preparation of methyl ethoxy silane compounds. The optimum parameter selected after careful and precise studies was between 20 – 30 ml \ min to carrieir gas flow rate, while applied temperatures of detector and injection part were 250 Â
... Show MoreIris recognition occupies an important rank among the biometric types of approaches as a result of its accuracy and efficiency. The aim of this paper is to suggest a developed system for iris identification based on the fusion of scale invariant feature transforms (SIFT) along with local binary patterns of features extraction. Several steps have been applied. Firstly, any image type was converted to grayscale. Secondly, localization of the iris was achieved using circular Hough transform. Thirdly, the normalization to convert the polar value to Cartesian using Daugman’s rubber sheet models, followed by histogram equalization to enhance the iris region. Finally, the features were extracted by utilizing the scale invariant feature
... Show MoreAnemia is one of the common types of blood diseases, it lead to lack of number of RBCs (Red Blood Cell) and amount hemoglobin level in the blood is lower than normal.
In this paper a new algorithm is presented to recognize Anemia in digital images based on moment variant. The algorithm is accomplished using the following phases: preprocessing, segmentation, feature extraction and classification (using Decision Tree), the extracted features that are used for classification are Moment Invariant and Geometric Feature.
The Best obtained classification rates was 84% is obtained when using Moment Invariants features and 74 % is obtained when using Geometric Feature. Results indicate that the proposed algorithm is very effective in detect
Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the origin
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreThe field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show MoreThis paper include the problem of segmenting an image into regions represent (objects), segment this object by define boundary between two regions using a connected component labeling. Then develop an efficient segmentation algorithm based on this method, to apply the algorithm to image segmentation using different kinds of images, this algorithm consist four steps at the first step convert the image gray level the are applied on the image, these images then in the second step convert to binary image, edge detection using Canny edge detection in third Are applie the final step is images. Best segmentation rates are (90%) obtained when using the developed algorithm compared with (77%) which are obtained using (ccl) before enhancement.
Face recognition is one of the most applications interesting in computer vision and pattern recognition fields. This is for many reasons; the most important of them are the availability and easy access by sensors. Face recognition system can be a sub-system of many applications. In this paper, an efficient face recognition algorithm is proposed based on the accuracy of Gabor filter for feature extraction and computing the Eigen faces. In this work, efficient compressed feature vector approach is proposed. This compression for feature vector gives a good recognition rate reaches to 100% and reduced the complexity of computing Eigen faces. Faces94 data base was used to test method.