Let M be an R-module. We introduce in this paper the concept of strongly cancellation module as a generalization of cancellation modules. We give some characterizations about this concept, and some basic properties. We study the direct sum and the localization of this kind of modules. Also we prove that every module over a PID is strongly module and we prove every locally strong module is strongly module.
For modeling a photovoltaic module, it is necessary to calculate the basic parameters which control the current-voltage characteristic curves, that is not provided by the manufacturer. Generally, for mono crystalline silicon module, the shunt resistance is generally high, and it is neglected in this model. In this study, three methods are presented for four parameters model. Explicit simplified method based on an analytical solution, slope method based on manufacturer data, and iterative method based on a numerical resolution. The results obtained for these methods were compared with experimental measured data. The iterative method was more accurate than the other two methods but more complexity. The average deviation of
... Show MoreLet be a ring. Given two positive integers and , an module is said to be -presented, if there is an exact sequence of -modules with is -generated. A submodule of a right -module is said to be -pure in , if for every -Presented left -module the canonical map is a monomorphism. An -module has the -pure intersection property if the intersection of any two -pure submodules is again -pure. In this paper we give some characterizations, theorems and properties of modules with the -pure intersection property.
Let be a ring. Given two positive integers and , an module is said to be -presented, if there is an exact sequence of -modules with is -generated. A submodule of a right -module is said to be -pure in , if for every -Presented left -module the canonical map is a monomorphism. An -module has the -pure intersection property if the intersection of any two -pure submodules is again -pure. In this paper we give some characterizations, theorems and properties of modules with the -pure intersection property.
In this paper, subclasses of the function class ∑ of analytic and bi-univalent functions associated with operator L_q^(k, λ) are introduced and defined in the open unit disk △ by applying quasi-subordination. We obtain some results about the corresponding bound estimations of the coefficients a_(2 ) and a_(3 ).
The present study includes a theoretical treatment to derive the general equations of pumping threshold power ( ), laser output power (Pout), and laser device efficiency (ƞ) of the element-doped thin-disk laser (Yb3+) with a quasi-three-level pumping scheme in the continuous wave mode at a temperature of (299K°). In this study, the host crystals (YAG) were selected as typical examples of this laser design in a Gaussian transverse mode. The numerical solution of these equations was made using Matlab software by selecting the basic parameters from the recently published scientific articles for the laser design of these crystal hosts. According to this simulation, this article studied the effect o
... Show MoreIn this article, a new class of analytic functions which is defined by terms of a quasi-subordination is introduced. The coefficient estimates, including the classical inequality of functions belonging to this class, are then derived. Also, several special improving results for the associated classes involving the subordination are presented.
The concept of closed quasi principally injective acts over monoids is introduced ,which signifies a generalization for the quasi principally injective as well as for the closed quasi injective acts. Characterization of this concept is intended to show the behavior of a closed quasi principally injective property. At the same time, some properties of closed quasi principally injective acts are examined in terms of their endomorphism monoid. Also, the characterization of a closed self-principally injective monoid is given in terms of its annihilator. The relationship between the following concepts is also studied; closed quasi principally injective acts over monoids, Hopfian, co Hopfian, and directly finite property. Ultimately, based on
... Show MoreThroughout this paper S will be denote a monoids with zero. In this paper, we introduce the concept of En- prime subact, where a proper subact B of a right S- act As is called En- prime subact if for any endomorphism f of As and a As with f(a)S⊆ Bimplies that either a B or f(As) ⊆ B. The right S-act As is called En-prime if the zero subact of As is En-prime subact. Some various properties of En-prime subact are considered, and also we study some relationships between En-prime subact and some other concepts such as prime subact and maximal subact.
Hydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300) gram. The maximum hydrogen produc
... Show MoreThe main purpose of this paper is to study the application of weyl module and resolution in the case skew- shapes (6, 5) / (1, 0) and (6, 5) / (2, 0) by using contracting homotopy and the place polarization.