Let M be an R-module. We introduce in this paper the concept of strongly cancellation module as a generalization of cancellation modules. We give some characterizations about this concept, and some basic properties. We study the direct sum and the localization of this kind of modules. Also we prove that every module over a PID is strongly module and we prove every locally strong module is strongly module.
In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.
In this paper, we introduce the concept of e-small M-Projective modules as a generalization of M-Projective modules.
In this work, we introduced and studied a new kind of soft mapping on soft topological spaces with an ideal, which we called soft strongly generalized mapping with respect an ideal I, we studied the concepts like SSIg-continuous, Contra-SSIg-continuous, SSIg-open, SSIg-closed and SSIg-irresolute mapping and the relations between these kinds of mappings and the composition of two mappings of the same type of two different types, with proofs or counter examples
In this paper, we define and study z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules. A submodule of -module is called z-small ( if whenever , then . Also, is called a z-small quasi-Dedekind module if for all implies . We also describe some of their properties and characterizations. Finally, some examples are given.
Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept
In this note we consider a generalization of the notion of a purely extending
modules, defined using y– closed submodules.
We show that a ring R is purely y – extending if and only if every cyclic nonsingular
R – module is flat. In particular every nonsingular purely y extending ring is
principal flat.
Let R be commutative ring with identity and let M be any unitary left R-module. In this paper we study the properties of ec-closed submodules, ECS- modules and the relation between ECS-modules and other kinds of modules. Also, we study the direct sum of ECS-modules.
In this paper, we introduce the notion of a 2-prime module as a generalization of prime module E over a ring R, where E is said to be prime module if (0) is a prime submodule. We introduced the concept of the 2-prime R-module. Module E is said to be 2-prime if (0) is 2-prime submodule of E. where a proper submodule K of module E is 2-prime submodule if, whenever rR, xE, E, Thus xK or [K: E].
Let be a ring with identity and let be a left R-module. If is a proper submodule of and , is called --semi regular element in , If there exists a decoposition such that is projective submodule of and . The aim of this paper is to introduce properties of F-J-semi regular module. In particular, its characterizations are given. Furthermore, we introduce the concepts of Jacobson hollow semi regular module and --semiregular module. Finally, many results of Jacobson hollow semi regular module and --semiregular module are presented.
The present study introduces the concept of J-pure submodules as a generalization of pure submodules. We study some of its basic properties and by using this concept we define the class of J-regular modules, where an R-module M is called J-regular module if every submodule of M is J-pure submodule. Many results about this concept are proved