The grapheme Flakes were prepared by reduction graphite oxide which was prepared by Hummer’s method. X-ray diffraction (XRD) pattern showed that the graphene oxide have a sharp peak at (001) with d-spacing d001= 7.4Å at angle 2ϴ=11.85˚and graphene has broad peak at (002) with d-spacing d002=3.4Å at angle 2ϴ= 25.72˚ with lattice constant (a=2.47 Å). The particle size was calculated by using equation Debye - Scherer and Williamson - Hall equations, Scanning electron microscopy examination and particle size analyzer proved that the graphene Flakes were in nano size. Also the surface area of nanoparticles showed a value 270 m2/g . The micrographs of (scanning electron microscopy) showed that graphene oxide has a fluffy aggregation and the form of graphene as a flakes or nano-sheets.
Thin films of zinc selenide ZnSe have been prepared by using thermal evaporation method in vacuum with different thickness (1000 – 4000) Ao and a deposited on glass substrate and studying some electrical properties including the determination of A.C conductivity and real, imaginary parts of dielectric constant and tangent of loss angle. The result shows that increasing value of A.C conductivity with increasing thickness and temperature, and increasing capacitance value with increasing the temperature and decrease with increasing frequency . Real and imaginary parts of dielectric constant and tangent of loss angle decrease with increasing frequency
We studied the changing of structural and optical properties of pure and Aluminum-doped ZnO thin films prepared by thermal evaporation technique on glass substrates at thickness (800±50)nm with changing of annealing temperatures ( 200,250,300 )℃ for one hour. The investigation of (XRD) indicates that the pure and doped ZnO thin films were polycrystalline of a hexagonal wurtzite structure with preferred orientation along (002) plane. The grain size was decreased with doping before annealing, but after annealing the grain size is increasing with the increase of annealing temperature for pure film whereas for the doped films with ratios 1 %, 2 % we found that the grain size is larger than that before annealing. The grain size
... Show MoreIn this paper, we have generalized the concept of one dimensional Emad - Falih integral transform into two dimensional, namely, a double Emad - Falih integral transform. Further, some main properties and theorems related to the double Emad - Falih transform are established. To show the proposed transform's efficiency, high accuracy, and applicability, we have implemented the new integral transform for solving partial differential equations. Many researchers have used double integral transformations in solving partial differential equations and their applications. One of the most important uses of double integral transformations is how to solve partial differential equations and turning them into simple algebraic ones. The most important
... Show MoreNanocrystal-ZnS-loaded graphene was synthesized by a facile co-precipitation route. The Graphene was affected on the characterization of ZnS which has been investigated. XRD results reveal that ZnS has a cubic system while the hexagonal structure has been observed by loading graphene during preparation ZnS. D.c-conductivity proves that ZnS and ZnS/Gr have semiconductor behavior. The sensing properties of ZnS/Gr against NO2 gas were investigated as a function of operating temperature and time under optimal condition. The sensitivity, response time and recovery time were calculated with different operating temperatures (100, 150, 200)oC.
This paper presents the effect of Cr doping on the optical and structural properties of TiO2 films synthesized by sol-gel and deposited by the dip- coating technique. The characteristics of pure and Cr-doped TiO2 were studied by absorption and X-ray diffraction measurement. The spectrum of UV absorption of TiO2 chromium concentrations indicates a red shift; therefore, the energy gap decreases with increased doping. The minimum value of energy gap (2.5 eV) is found at concentration of 4 %. XRD measurements show that the anatase phase is shown for all thin films. Surface morphology measurement by atomic force microscope (AFM) showed that the roughness of thin films decrease with doping and has a minimum value with 4 wt % doping ratio.
Poly [N-(1, 3-thiazo-2yl)]maleamic acid synthesized from corresponding monomer N-(1, 3-thiazo-2yl)maleamic acid (NTM) by using the process of electrochemical polymerization in aqueous solution at room temperature. The structure of the polymeric layer generated on the surface of (Low Carbon Steel (L.C.S)) (working electrode) was investigated by Fourier Transmission Infrared [FT-IR] and a scanning electron microscope [SEM]. The anticorrosion ability of a polymeric layer on low carbon steel (L.C.S) was investigated using a method of electrochemical polarization at temperatures ranging from (293 to 323) K, in a 3.50 percent NaCl solution. The activation parameters, both kinetic and thermodynamic for the L.C.S corrosion process were
... Show MoreLow cost Co-Precipitation method was used for Preparation of novel nickel oxide (NiO) nano particle thin films with Simple, with two different PH values 6, 12 and its effect on structural and optical properties as an active optical filter. Experimental results of structural properties X-ray diffraction (XRD) showed that both Nickel oxide nanoparticles with (PH=6 and 12) have polycrystalline structure smaller average particle size about 8.5 nm for PH=6 in comparison with PH=12. Morphological studies using Scanning electron microscopy (SEM) and atomic force microscope (AFM) show uniform nano rod distribution for PH=6 with smaller average diameter, average roughness as compared with NiO with
... Show MoreTitanium dioxide nanorods have been prepared by sol-gel template
method. The structural and surface morphology of the TiO2 nanorods was
investigated by X-ray diffraction (XRD) and atomic force microscopy
(AFM), it was found that the nanorods produced were anatase TiO2 phase.
The photocatalytic activity of the TiO2 nanorods was evaluated by the
photo degradation of methyl orange (MO). The relatively higher
degradation efficiency for MO (D%=78.2) was obtained after 6h of exposed
to UV irradiation.
Zinc oxide films (ZnO) are prepared by an electrolysis technique and without vacuum and then annealed atvarious temperatures (300,400,500)OC for an hour. The structural analysis performed by X-Ray diffraction (XRD) shows,dominant orientation of this films is plane (101), has a hexagonal structure and polycrystalline pattern and it was is found that the crystal size increases(24,29) nm at annealing temperatures (300, 400)° C, but the crystal size decreases to (20 nm) at annealing temperature (500 ° C). As the results of a surface nature study of these films showed by examining the atomic force microscope (AFM), the grain size increases from (60.79 to 88.11) nm, and the surface roughnes
... Show More