Thin Lithium Fluoride films have been prepared by thermal evaporation technique on glass substrate under vacuum of about 10-5mbar. The thickness of the films was 4000±50Å. The effects of annealing temperatures on the optical properties and dispersion parameters have been studies. Transmittance spectra of the films indicate that the films have high transparency. The optical absorption studies reveal that the transition is direct with band gap value varied with the annealing temperatures. Also the refractive index dispersion curves obey to the single oscillator's model. The dispersion energy and single-oscillator energy varied with the annealing temperatures
BaTiO3 thin films have been deposited on Si (111) and glass substrates by using pulsed laser deposition technique. The films were characterized by using X-ray diffraction, atomic force microscope and optical transmission spectra. The films growth on Si after annealing at 873K showed a polycrystalline nature, and exhibited tetragonal structure, while on glass substrate no growth was noticed at that temperature. UV-VIS transmittance measurements showed that the films are highly transparent in the visible wavelength region and near-infrared region for sample annealing on glass substrate. The optical gap of the film were calculated from the curve of absorption coefficient (αhν) 2 vs. hν and was found tobe 3.6 eV at substrate temperature 5
... Show MoreIncremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th
... Show MoreIn this study, we investigated the effect of Bromocresol green dye (BCG) of the PMMA thin films optical properties. Films of Poly Methyl Methacrylate doped by 10% BCG doping ratio to prepared two concentrations 2x10-4 and 6x10-4 M of PMMA-BCG dye were deposited on glass substrate using free casting method at room temperature. The optical properties of the films were determined using UV-Visible absorbance and transmittance spectra at the 300 - 900 nm wavelength range. The linear absorption coefficient and the extinction coefficient were calculated. The results showed that the optical properties were increasing by increasing the dye concentration, while the optical energy gap was decreasing with the doping. Also from
... Show MoreThis research focuses on the synthesis of carbon nanotube (CNT) and Poly(3-hexylthiophene) (P3HT) (pristine polymer) with Ag doped (CNT/ P3HT@Ag) nanocomposite thin films to be utilised in various practical applications. First, four samples of CNT solution and different ratios of the polymer (P3HT) [0.1, 0.3, 0.5, and 0.7 wt.%] are prepared to form thin layer of P3HT@CNT nanocomposites by dip-coating method of Ag. To investigate the absorption and conductivity properties for use in various practical applications, structure, morphology, optical, and photoluminescence properties of CNT/P3HT @Ag nanocomposite are systematically evaluated in this study. In this regard, the UV/Vis/NIR spectrophotometer in the wavelength range of 350 to 7
... Show MoreThin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
The electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .