Preferred Language
Articles
/
ijs-9266
Phytoremediation of Chromium and Copper from Aqueous Solutions Using Hydrilla verticillata
...Show More Authors

The current study included testing the ability of plant Hydrilla verticillata (L. F.) on the accumulation of two heavy metals in its tissues, and use the plant in phytoremediation. The plant was exposure to different concentrations of chromium and copper metals (2.5, 5, 10, 15, 20) ppm, for a period of fourteen days, for each solution.The results showed that Hydrilla was more efficient in the removal of chromium, where the amount of the remaining concentration of chromium at the last day of the experiment was (0.20 ± 0.014- 0.66 ± 0.114- 0.99 ± 0.176- 0.79 ± 0.073- 1.80 ± 0.131) ppm, while for copper was (0.33 ± 0.06- 1.13 ± 0.39- 1.66 ± 0.05- 1.96 ± 0.043- 2.33 ± 0.0497) ppm at the last day of the experiment, respectively.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jul 19 2024
Journal Name
Applied Science And Engineering Progress
Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication
...Show More Authors

Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported

... Show More
View Publication
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Ecological Engineering
Chlorpyrifos Removal from Aqueous Solutions by Emulsion Liquid Membrane – Stability, Extraction, and Stripping Studies
...Show More Authors

Crossref (2)
Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Al-Khriet Agricultural Waste Adsorbent, for Removal Lead and Cadmium Ion from Aqueous Solutions
...Show More Authors

The availability of low- cost adsorbent namely Al-Khriet ( a substance found in the legs of Typha  Domingensis) as an agricultural waste material, for the removal of lead and cadmium from aqueous solution was investigated. In the batch tests experimental parameters were studied, including adsorbent dosage between (0.2-1) g, initial metal ions concentration between (50-200) ppm (single and binary) and contact time (1/2-6) h. The removal percentage of each ion onto Al-Khriet reached equilibrium in about 4 hours. The highest adsorption capacity was for lead (96%) while for cadmium it was (90%) with 50 ppm ions concentration, 1 g dosage of adsorbent and pH 5.5. Adsorption capacity in the binary mixture were reduce at about 8% for lead a

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 05 2017
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
STUDY THE OPTIMUM CONDITIONS FOR THE REMOVAL OF HEAVY METAL ELEMENTS FROM AQUEOUS SOLUTIONS USING CONTAMINATED BACTERIA Bacillus subtilis LOCALLY ISOLATED: STUDY THE OPTIMUM CONDITIONS FOR THE REMOVAL OF HEAVY METAL ELEMENTS FROM AQUEOUS SOLUTIONS USING CONTAMINATED BACTERIA Bacillus subtilis LOCALLY ISOLATED
...Show More Authors

We studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
A study of adsorption isotherms for the removal of herbicide Atlantis WG from aqueous solutions by using Bentonite clay
...Show More Authors

The subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air And Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Scopus (17)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air, & Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Crossref (18)
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
The Potential Efficiency of Bacillus subtilis AIK to Remove Nickel from Aqueous Solutions
...Show More Authors

In this study a new strain of mesophilic Bacillus subtilis AIK, recorded for the first time in Iraq, was used to remove nickel (Ni) from aqueous solutions. The factors that affect bioremediation include temperature, pH value and metal concentrations. The results showed that the highest removal efficiency (R%) was 54, 52 and 48% at 25⁰C and pH of 5, 7 and 9, and with 10 ppm Ni concentration respectively. Whereas the highest R% recorded was 47, 45 and 52% at 30⁰C and of pH 5, 7, and 9 with 1 ppm Ni concentration respectively. On the other hand, the highest R% at 40⁰C was 49, 46, 42 % at pH 5, 7 and 9, with 5, 10 and 10 ppm Ni concentrations respectively. The results also showed that the optimum pH value for Ni removal at bot

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
The removal of Zinc, Chromium and Nickel from industrial waste water using Rice husk
...Show More Authors

The aim of this study was to use low cost adsorbents, which consists of plant wastes in treatment of Industrial waste water by fixed bed column technique and study the effect of to two variables (pH value and contact time) on adsorption process. The sample of plant waste (Rice husk) was tested to determine its activity which gives the best performance in heavy metals removal and other pollutants (TSS, TDS and COD). Adsorption tests showed all tested plant adsorbents had significant heavy metal removal efficiency. The best removal efficiency 96.56% of Cr was occurred at pH 6.5 and 5hrs. Higher removal efficiency 99.02% of Ni was occurred at pH 6.5 and 0.15hr. While, lower removal efficiency 94% for Zn obtained at pH 5 and 2.83hrs. Removal

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
The Removal of Zinc, Chromium and Nickel from Industerial Waste-Water Using Banana Peels
...Show More Authors

The current study was designed for using banana peels to remove zinc, chromium and nickel from industrial waste-water. Three forms of these peels (fresh, dried small pieces and powder) were tested under some environmental factors such as pH, temperature and contact time. Current data show that banana peels are capable of removing zinc, chromium and nickel ions at significant capacity. Furthermore, the powder of banana peels had highest capability in removing all zinc, chromium and nickel ions followed by fresh peels whilst dried peels had the lowest bioremoving capacity again for all metals under test. The highest capacity was for chromium then nickel and finally zinc. All these data were significantly (LSD peel forms = 2.761 mg/l, LSD m

... Show More
View Publication Preview PDF