In this work, watershed transform method was implemented to detect and extract tumors and abnormalities in MRI brain skull stripped images. An adaptive technique has been proposed to improve the performance of this method.Watershed transform algorithm based on clustering techniques: K-Means and FCM were implemented to reduce the oversegmentation problem. The K-Means and FCM clustered images were utilized as input images to the watershed algorithm as well as of the original image. The relative surface area of the extracted tumor region was calculated for each application. The results showed that watershed trnsform algorithm succeedeed to detect and extract the brain tumor regions very well according to the consult of a specialist doctor after viewing the resultant images. The adaptive technique, watershed based on clustered segmented image, improved the performance of the watershed transform and reduced the oversegmentation problem, and the utilizing of bilateral smoothing improves this result.
In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
In the present paper, the authors introduce and investigates two new subclasses and, of the class k-fold bi-univalent functions in the open unit disk. The initial coefficients for all of the functions that belong to them were determined, as well as the coefficients for functions that belong to a field determining these coefficients requires a complicated process. The bounds for the initial coefficients and are contained among the remaining results in our analysis are obtained. In addition, some specific special improver results for the related classes are provided.
In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r
... Show MoreThe aim of this study is to identify the effect of enabling the effectiveness of the work of the audit committees in private commercial banks and to identify the extent of awareness of the importance of empowerment in the work of these committees, especially as it is known that these committees, especially the inspection committees that go to private banks and from various sources including committees of the Central Bank of Iraq Committees of the Securities Commission and finally committees of the external audit offices, through an analysis of the determinants of empowerment in the performance of the most important work of the audit committees, namely: supervising the process of preparing reports, supervising the system of intern
... Show MoreA simulation study of using 2D tomography to reconstruction a 3D object is presented. The 2D Radon transform is used to create a 2D projection for each slice of the 3D object at different heights. The 2D back-projection and the Fourier slice theorem methods are used to reconstruction each 2D projection slice of the 3D object. The results showed the ability of the Fourier slice theorem method to reconstruct the general shape of the body with its internal structure, unlike the 2D Radon method, which was able to reconstruct the general shape of the body only because of the blurring artefact, Beside that the Fourier slice theorem could not remove all blurring artefact, therefore, this research, suggested the threshold technique to eliminate the
... Show MoreRestoration is the main process in many applications. Restoring an original image from a damaged image is the foundation of the restoring operation, either blind or non-blind. One of the main challenges in the restoration process is to estimate the degradation parameters. The degradation parameters include Blurring Function (Point Spread Function, PSF) and Noise Function. The most common causes of image degradation are errors in transmission channels, defects in the optical system, inhomogeneous medium, relative motion between object and camera, etc. In our research, a novel algorithm was adopted based on Circular Hough Transform used to estimate the width (radius, sigma) of the Point Spread Function. This algorithm is based o
... Show MoreThe combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreThis article presents a polynomial-based image compression scheme, which consists of using the color model (YUV) to represent color contents and using two-dimensional polynomial coding (first-order) with variable block size according to correlation between neighbor pixels. The residual part of the polynomial for all bands is analyzed into two parts, most important (big) part, and least important (small) parts. Due to the significant subjective importance of the big group; lossless compression (based on Run-Length spatial coding) is used to represent it. Furthermore, a lossy compression system scheme is utilized to approximately represent the small group; it is based on an error-limited adaptive coding system and using the transform codin
... Show MoreIn this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
The AlAdhaim Dam is located 133 kilometers northeast of Baghdad. It is a multipurpose dam and joints the Iraqi dam system in 2000. It has a storage capacity of 1.5 billion m3. The dam has an ogee spillway with a length of 562 m, a crest level of 131.5 m.a.m.s.l. and a maximum discharge capacity of 1150 m3/s at its maximum storage height of 143 m.a.m.s.l. This research aimed to investigate the hydrodynamics performance of the spillway and the stilling basin of AlAdhiam Dam by using numerical simulation models under gated situations. It was suggested to modify the dam capacity by increasing the dam's storage capacity by installing gates on the crest of the dam spillway. The FLUENT program was used to
... Show More