we study how to control the dynamics of excitable systems by using the phase control technique.We study how to control nonlinear semiconductor laser dynamics with optoelectronic feedback using the phase control method. The phase control method uses the phase difference between a small.added frequenc y and the main driving frequency to suppress chaos, which leads to various periodic orbits. The experimental studying for the evaluation of chaos modulation behavior are considered in two conditions, the first condition, when one frequency of the external perturbation is varied, secondly, when two of these perturbations are changed. The chaotic system becomes regular under one frequency or two frequencies, But in two frequencies, phase control showed an excellent ability to maintain regular behavior in chaotic window and reexcite chaotic behavior when destroyed. This dynamics of the laser output are analyzed by time series and bifurcation diagram.
This research focuses on improvement of the corrosion behaviour of commercial pure titanium (Ti) grade II when exposed to Hank’s solution through different surface treatments. The disc shape of titanium samples were constructed to be divided according to their surface treatment. The first experimental group the Ti sample was exposed to computer numerical control (CNC) fiber laser machine. Whereas, the other experimental group the Ti sample was only coated with Polyetherketon keton (PEKK) by using carbon dioxide (CO2) laser technique while the last experimental group the Ti sample was treated with CNC fiber laser followed by PEKK coating by using CO2 laser technique. All were compared with the untreated control group. The electrochemical a
... Show MoreThin films of microcrystalline and nanocrystalline -silicon carbide and silicon, where deposited on glass substrate with substrate temperature ranging from 350-400C, with deposition rate 0.5nm per pulse, by laser induced chemical vapor deposition. The deposition induced by TEACO2 laser. The reactant gases (SiH4 and C2H4) photo decompose throughout collision associated multiple photon dissociate. Such inhomogeneous film structure containing crystalline silicon, silicon carbide and amorphous silicon carbide matrix, give rise to a new type of material nanocrystalline silicon carbide in which the optical transmittance is governed by amorphous SiC phase while nanocrystalline grain are responsible for the conduction processes. This new m
... Show MoreNd:YAG laser pulses of 9 nanosecond pulse duration and operating wavelength at 1.06 μm, were utilized to drill high thermal conductivity and high reflectivity aluminum and copper foils. The results showed a dependence of drilled holes characteristics on laser power density and the number of laser pulses used. Drilled depth of 74 ϻm was obtained in aluminum at 11.036×108 W/cm2 of laser power density. Due to its higher melting point, copper required higher laser power density and/or larger number of laser pulses to melt, and a maximum depth of 25 μm was reached at 13.46×108 W/cm2 using single laser pulse.
High-intensity laser-produced plasma has been extensively investigated in many studies. In this demonstration, a new spectral range was observed in the resulted spectra from the laser-plasma interaction, which opens up new discussions for new light source generation. Moreover, the characterizations of plasma have been improved through the interaction process of laser-plasma. Three types of laser were incorporated in the measurements, continuous-wave CW He-Ne laser, CW diode green laser, pulse Nd: YAG laser. As the plasma system, DC glow discharge plasma under the vacuum chamber was considered in this research. The plasma spectral peaks were evaluated, where they refer to Nitrogen gas. The results indicated that the
... Show MoreBackground: Laser urinary stone lithotripsy is an established endourological modality. Ho:YAG(2100nm) laser have broadened the indications for ureteroscopic stone managements to include larger stone sizes throughout the whole urinary tract.
Purpose: To evaluate the effectiveness and safety of Holmium: YAG(2100nm) laser lithotripsy with a semirigid uretero scope for urinary stone calculi in a prospective cohort of 17 patients.
Patients and Methods: Holmium: YAG(2100nm) laser lithotripsy was performed with a semirigid ureteroscope in 17 patients from September 2016 to December 2016. Calculi were located in the lower ureter in 9 patients (52.9%), the midure
... Show MoreInformation is an essential and valuable object in all systems. The more information you have about your issue, the better you can conform to the world around you. Moreover, information recognizes companies and provides influence that helps one company be more effective than another. So, protecting this information using better security controls and providing a high level of access to authorized parties becomes an urgent need. As a result, many algorithms and encryption techniques have been developed to provide a high level of protection for system information. Therefore, this paper presents an enhancement to the Blowfish algorithm as one of the cryptography techniques. Then it proposes an enhancement for increasing efficiency
... Show MoreBackground: This study aimed to apply a high-power pulsed alexandrite laser in vitro, the researchers tested different exposure periods, pulse lengths, and laser fluencies to see which dosage was most successful against S. aureus bacteria, which had developed resistance to many antibiotics. Method: Three bacteria samples were exposed to laser beams for 30 seconds with a 5ms pulse duration and a laser fluency of 5J/cm2. The process was repeated with laser fluencies of 10, 15, and 20. Results: The study was carried out by using different doses of Alexandrite laser. Results: There are significant differences (p = 0.05) in the mean number of bacteria colonies exposed for 30 and 60 seconds at any laser fluencies utilized in the present i
... Show MoreIn this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.
In IRAQ, the air conditioners are the principal cause of high electrical demand. In summer, the outer temperature sometimes exceeds 500C which significantly effects on the A/C system performance and power consumed. In the present work, the improvement in mechanical and electrical performance of split A/C system is investigated experimentally and analytically. In this paper, performance and energy saving enhancement of a split-A/C system was experimentally investigated to be efficiently compatible with elevated temperature weathers. This improvement is accomplished via Smart Control System integrate with Proportional-Integral- Differential PID algorithm. The PIC16F877A micro-controller has been programmed with the PID and PWM c
... Show More