Preferred Language
Articles
/
ijs-912
Well-Controlled Generation Process of Bimetallic Ag//Au Colloidal Nanoparticles by Non-Thermal Plasma DC Glow Discharge
...Show More Authors

In this paper, an inexpensive, simple and well-accurate process of the generation of bimetallic silver Ag//gold Au core//shell is colloidal metal nanoparticles (MNPs). This is achieved via an atmospheric pressure non-thermal plasma glow discharge between two electrodes. One of these electrodes is a capillary tube placing over solution about (1 cm) that acts as the cathode, while the other electrode is a metal disk immersed in the solution and acts as an anode. Glow discharge process carried out at room temperature using a home-made cell with (6 KV) applied voltage and direct current (DC) about (1.8 mA) for different discharge periods. A wide range of bimetallic Ag//Au colloidal MNPs was rapidly synthesized as a result of non-thermal plasma formation between a capillary tube and the surface of AgNO3 solution for (5 min) and a mixture of AgNPs-HAuCl4 solution for (5, 10 and 15 min). Field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and X-ray diffraction were used to investigate the structural properties of the bimetallic Ag//Au colloidal MNPs. While optical properties were investigated using a UV-Vis spectrophotometer. Results show that the discharge time plays a crucial role in modifying the bimetallic nanoparticles properties such as grain size, surface area, and optical stability. Moreover, TEM and FE-SEM confirm the formation of Ag//Au core//shell structure with uniform sizes and shapes.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
International Journal Of Medical Research & Health Sciences
Non-Surgical Treatment of Gingival Recession by Platelet-Rich Plasma
...Show More Authors

Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Synthesis of Bimetallic Au–Pt / TiO2 Catalysts as an Efficient Catalyst for the Photodegradation of Crystal Violet Dye
...Show More Authors

     Bimetallic Au –Pt catalysts supporting TiO2 were synthesised using two methods; sol immobilization and impregnation methods. The prepared catalyst underwent a thermal treatment process at 400 C, while the reduction reaction under the same condition was done and the obtained catalysts were identified with transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). It has been found that the prepared catalysts have a dimension around 2.5 nm and the particles have uniform orders leading to high dispersion of platinum molecules .The prepared catalysts have been examined as efficient photocatalysts to degrade the Crystal violet dye under UV-light. The optimum values of Bimetallic Au –

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
The Thermal Properties of Gliding arc Plasma Produced by Laboratory Reverse Vortex Flow System
...Show More Authors

A low-cost reverse flow plasma system powered by argon gas pumping was built using homemade materials in this paper. The length of the resulting arc change was directly proportional to the flow rate, while using the thermal camera to examine the thermal intensity distribution and demonstrating that it is concentrated in the centre, away from the walls at various flow rates, the resulting arc's spectra were also measured. The results show that as the gas flow rate increased, so did the ambient temperature. The results show that the medium containing the arc has a maximum temperature of 34.1 ˚C at a flow rate of 14 L/min and a minimum temperature of 22.6 ˚C at a flow rate of 6 L/min.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Electrodepositing of Multi-Layer Ni-Ag Coated by Copper Nanoparticles for Solar Absorber
...Show More Authors

In this work, the effect of the addition of bright nickel plating and silver carried out by the electroplating method has been studied, on the coating of copper nanoparticles on the copper base metal via the process of thermal evaporation. The improvement of the solar absorber using CuNP in combination with the bright nickel and silver was obtained to be better than copper nanoparticles individually. A bright nickel enhanced the absorbed thermal stability. Also, other optical properties, absorptions, and emissivity slightly decreased from (93% to 87%), while the existence of silver had a slight impact on absorption of about (86.50%). On the other hand, thermal conductivity was evaluated using hot disk analyzer. The results showed a good

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
A Study of Crystallographic and DC Electrical Characteristics of PPy/Ag Nanocomposites
...Show More Authors

ABSTRACT: Polypyrrole and polypyrrole / silver nanocomposites were fabricated by in-situ polymerization employing Ammonium Persulphate as an oxidizing agent. Nanocomposites were synthesized by combining polypyrrole and silver nanoparticles in various weight percentages (0.1%, 0.5%, 3%, 5% and 7% wt.). Crystallographic data were collected using X-ray diffraction.  PPy particles were found to have an orthorhombic symmetry. In contrast, PPy/Ag nanocomposites were reported to have monoclinic structure. The crystallite size was determined by XRD using Scherrer equation and considered to be within 49 nm range. DC conductivity of pelletized samples was evaluated in the temperature range of 323.15k to 453.15k. The conductiv

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
A Study of Crystallographic and DC Electrical Characteristics of PPy/Ag Nanocomposites
...Show More Authors

ABSTRACT: Polypyrrole and polypyrrole / silver nanocomposites were fabricated by in-situ polymerization employing Ammonium Persulphate as an oxidizing agent. Nanocomposites were synthesized by combining polypyrrole and silver nanoparticles in various weight percentages (0.1%, 0.5%, 3%, 5% and 7% wt.). Crystallographic data were collected using X-ray diffraction.  PPy particles were found to have an orthorhombic symmetry. In contrast, PPy/Ag nanocomposites were reported to have monoclinic structure. The crystallite size was determined by XRD using Scherrer equation and considered to be within 49 nm range. DC conductivity of pelletized samples was evaluated in the temperature range of 323.15k to 453.15k. The conductivity displayed an

... Show More
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Experimental investigation of dusty plasma characteristics in AC discharge system
...Show More Authors

In the present work, the effect of size of zinc dust particles on
AC argon discharge characteristics are investigated
experimentally. The plasma characteristics are determined by
using optical emission spectroscopy (OES) techniques. The
results illustrated that the electron temperature (Te) in the present
and absent of Zinc dust particle is reduced with increasing of
pressure. The electron temperature decreases with increasing of
Zinc dust size. Excitation temperature Tex is reduces with
increasing of Ar pressure in present and absent of zinc dust
particles. The present of Zinc dust reduce the Tex of Ar in both
Zinc dust size. The electron density increasing in the present and
absent of both zinc dust siz

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Impedance Characteristics of Pulsed Atmospheric Electrical Discharge in Spherical Plasma Switch
...Show More Authors

A number of pulsed experiments have been carried out using a high-voltage circuit containing R,L, and C in certain arrangements. A spherical spark gap of steel electrodes was used as a high-current switch operated by a voltage of up to 8kV and triggered in both self-triggering and third-electrode triggering modes. Current measurements were carried out by using both current-viewing resistor and Rogowski coils designed for this purpose. Typical current waveforms have shown obvious dominating inductance effect of the circuit components in an underdamped oscillation. The behavior of the circuit impedance was studied by recording both pulsed current peaks and the charging voltages when currents of up to 2.5kA were recorded. The dur

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 21 2022
Journal Name
Journal Of Petroleum Research And Studies
Smart Well Modelling for As Reservoir in AG Oil Field
...Show More Authors

Intelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we

... Show More
View Publication
Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Influence of Distance and Argon Flow rate on Pseudomonas aeruginosa Bacteria Exposed to Non thermal Plasma at Atmospheric Pressure
...Show More Authors

     In this research, a type of gram negative bacteria was exposed to non-thermal plasma at a distance of (2 and 3 cm) from the plasma flow nozzle, with the use of an alternating power supply (5KHz), where exposure was made at two different voltages (4.9 and 8 kV). A negative gram of Pseudomonas aeruginosa bacteria was isolated and exposed to non-thermal plasma at different flow rates of argon gas whose value ranged from (1-5) liters/minute. The results showed that bacterial killing rate is directly proportional to distance while exposing the samples to non-thermal plasma, and the best factors by which a complete killing rate was obtained were at a distance of 2 cm with a voltage of 8 kV and a gas flow rate of 5 liters/min,

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref