Charge extraction layers play a crucial role in developing the performance of the inverted organic solar cells. Using a transparent metal oxide with appropriate work function to the photoactive layer can significantly decrease interface recombination and enhance charge transport mechanism. Therefore, electron selective films that consist of aluminium-doped titanium dioxide (TiO2:Al) with different concentrations of Al (0.4, 0.8, and 1.2)wt % were prepared using sol-gel technique. The inverted organic solar cells PCPDTBT: PCBM with Al doped TiO2 as electron extraction layer were fabricated. It is well known that Al doping concentration potentially affects the physical characteristics of the TiO2 by controlling the optical, morphological, and structural properties. The effect of Al incorporation on the optical and morphological properties of the prepared films were analysed using UV-Vis spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The current–voltage (J-V) curves of the PCPDTBT: PCBM organic solar cells show that the TiO2:Al layer with 0.8% Al wt%, has the highest power conversion efficiency which is 3.02%.
The present work aimed to study effect of (N749 & N3) dyes on TiO2 optical and electrical properties for optoelectronic application. The TiO2 paste prepared by using a doctor blade method. The samples were UV-VIS specterophometricall analyzes of TiO2 before and after immersed in dyes (N749 & N3). The results showed absorption spectra shift toward the visible region due to the adsorption of dye molecules on the surface of oxide nanoparticles. It is seen that the Eg determined to give a value of 3.3eV for TiO2 before immersing in dyes, and immersing in dyes (N749 & N3) are (1.4 &1.6 eV) respectively. The structural properties (XRD), (FTIR) and (SEM) for the sample prepared were investigated and (J-V) characteristics was stu
... Show MoreIn this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity
... Show MoreIn this work, A new strategy for enhancing the efficiency of dye sensitized solar cells (DSSC) by doping foreign ion and co- doping TiO2 / Fe and Cu (38 nm ) was prepared by sol-gel method and successfully used as a photoanode for (DSSC). The samples were characterized by using X-ray diffraction ( XRD) is used to calculate grain size, before and after Fe, Cu- doping and co- doping. Glass coating process with a thin layer on (Fluorine doped tin oxide) FTO glass by using doctor Blade technique .The optimum thickness utilized for TiO2 paste is (15μm) on a conductive glass. The best experimental results for doping and co- doping TiO2 with additive Copper (II) nitrate Cu (NO3)2 as improved it was VOC=0.6 V, ISC=1.92 mA, Imax=1.8 mA and Vmax=
... Show MoreThis article reviews the construction of organic solar cell (OSC) and characterized their optical and electrical properties, where indium tin oxide (ITO) used as a transparent electrode, “Poly (3-hexylthiophene- 2,5-diyl) P3HT / Poly (9,9-dioctylfluorene-alt-benzothiadiazole) F8BT” as an active layer and “Poly(3,4-ethylenedioxythiophene)-poly (styrene sulfonate)” PEDOT: PSS which is referred to the hole transport layer. Spin coating technique was used to prepared polymers thin film layers under ambient atmosphere to make OSC. The prepared samples were characterized after annealing process at (80 ͦ C) for (30 min) under non-isolated circumference. The results show a value of filling factor (FF) of (2.888), (0.233) and (0.28
... Show MoreDye-sensitized solar cell (DSSC) is one of the photochemical electric cells, which consists of the photoelectrode, the dye, the electrolyte, and the counter electrode. The advantage of DSSC is the low cost of the solar energy conversion into electricity because of inexpensive materials and the relative ease of the fabrication processes. In this study was selected solvent dye resolve to know most efficient in terms of conversion efficiency. A dye solution of water or ethanol and maxing in which eosin – y dissolves behaves like a colloid and explores the effect of sintering temperature of TiO2 films on the efficiency of dye sensitized solar cells. A study conducted on several samples at different temperatures. Exemplary efficiency of the
... Show More(3) (PDF) Theoretical calculation of the electronic current at N3 contact with TiO2 solar cell devices. Available from: https://www.researchgate.net/publication/362780274_Theoretical_calculation_of_the_electronic_current_at_N3_contact_with_TiO2_solar_cell_devices [accessed May 01 2023].
In this research, A thin film of Rhodamine B dye and TiO2 Nanoparticles doped in PMMA Polymer has been prepared by a casting method. The sample was spectrum absorption by UV-Vis. The nonlinear optical properties were measured by Z- scan technique using Nd:YAG laser with (1064 nm) wavelength. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) were estimated for the thin film for different energies of the laser, n2 and β were decreased with increasing intensity of incident laser beam. Also, the type of β was two-photon absorption and n2 negative nonlinear reflective.
The ferric oxide nanoparticles (Fe2O3) which are deposited at interface which is related to hole collecting buffer layer [poly(3,4-ethyl-enedioxythiophene): poly(styrene-sulfonate) (PEDOT: PSS)] as well as regioregular poly(3-hexyl-thiophene): Zinc oxide nanoparticles (P3HT): (ZnO) active layer have been considerable increasing the performance of solar cell. Also, the solar cell devices have been fabricated with a weight ratio of 1:0.7, 1:0.8, 1:0.9 and 1:1 of P3HT and ZnO, respectively. In addition, photo physical characteristics regarding such devices with different value of the weight ratio were examined. This work is indicating that the absorption spectrum related to blend will be broad
... Show MoreOrganic Permeable Base Transistors (OPBTs) reach a very high transit frequency and large on-state currents. However, for a later commercial application of this technology, a high operational stability is essential as well. Here, the stability of OPBTs during continuous cycling and during base bias stress is discussed. It is observed that the threshold voltage of these transistors shifts toward more positive base voltages if stressed by applying a constant potential to the base electrode for prolonged times. With the help of a 2D device simulation, it is proposed that the observed instabilities are due to charges that are trapped on top of an oxide layer formed around the base electrode. These charges are thermally released after rem
... Show More