This paper examines the finding of spacewise dependent heat source function in pseudoparabolic equation with initial and homogeneous Dirichlet boundary conditions, as well as the final time value / integral specification as additional conditions that ensure the uniqueness solvability of the inverse problem. However, the problem remains ill-posed because tiny perturbations in input data cause huge errors in outputs. Thus, we employ Tikhonov’s regularization method to restore this instability. In order to choose the best regularization parameter, we employ L-curve method. On the other hand, the direct (forward) problem is solved by a finite difference scheme while the inverse one is reformulated as an optimization problem. The later problem is accomplished by employing lsqnolin subroutine from MATLAB. Two test examples are presented to show the efficiency and accuracy of the employed method by including many noises level and various regularization parameters.
In this article, an inverse problem of finding timewise-dependent thermal conductivity has been investigated numerically. Numerical solution of forward (direct) problem has been solved by finite-difference method (FDM). Whilst, the inverse (indirect) problem solved iteratively using Lsqnonlin routine from MATLAB. Initial guess for unknown coefficient expressed by explicit relation based on nonlocal overdetermination conditions and intial input data .The obtained numrical results are presented and discussed in several figures and tables. These results are accurate and stable even in the presense of noisy data.
In this article, the inverse source problem is determined by the partition hyperbolic equation under the left end flux tension of the string, where the extra measurement is considered. The approximate solution is obtained in the form of splitting and applying the finite difference method (FDM). Moreover, this problem is ill-posed, dealing with instability of force after adding noise to the additional condition. To stabilize the solution, the regularization matrix is considered. Consequently, it is proved by error estimates between the regularized solution and the exact solution. The numerical results show that the method is efficient and stable.
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.