Preferred Language
Articles
/
ijs-8757
Improved Naked Mole-Rat Algorithm Based on Variable Neighborhood Search for the N-Queens Problem
...Show More Authors

     Solving problems via artificial intelligence techniques has widely prevailed in different aspects. Implementing artificial intelligence optimization algorithms for NP-hard problems is still challenging. In this manuscript, we work on implementing the Naked Mole-Rat Algorithm (NMRA) to solve the n-queens problems and overcome the challenge of applying NMRA to a discrete space set. An improvement of NMRA is applied using the aspect of local search in the Variable Neighborhood Search algorithm (VNS) with 2-opt and 3-opt. Introducing the Naked Mole Rat algorithm based on variable neighborhood search (NMRAVNS) to solve N-queens problems with different sizes. Finding the best solution or set of solutions within a plausible amount of time is the main goal of the NMRAVNS algorithm. The improvement of the proposed algorithm boosts the exploitation capability of the basic NMRA and gives a greater possibility, with the emerging search strategies, to find the global best solution. This algorithm proved successful and outperformed other algorithms and studies with a remarkable target. A detailed comparison is performed, and the data results are presented with the relevant numbers and values. NMRA and NMRAVNS comparisons are implemented and recorded. Later on, a comparison between the Meerkat Clan Algorithm, Genetic Algorithm, Particle Swarm Optimization, and NMRAVNS is tested and presented. Finally, NMRAVNS is evaluated against the examined genetic-based algorithm and listed to prove the success of the proposed algorithm. NMRAVNS outperformed previous findings and scored competitive results with a high number of queen sizes, where an average time reduction reached about 87% of other previous findings.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Optimization of Lovastatin Production from A Local Isolate of Aspergillus terreus A50 in Solid State Fermentation by Classical and Statistical Methods
...Show More Authors

Lovastatin is one of the most important compounds that is produced from some filamentous fungi, being employed in the reduction of hypocholesterolemia. The results of screening, after the collection of seventy-three local fungal isolates from different areas, demonstrated that the local isolate Aspergillus terreus A50 was the best isolate for lovastatin production, with a concentration of 12.66 µg/ml, through the submerged fermentation. Lovastatin produced from A. terreus A50 showed antimicrobial activities against a Candida albicans isolate. Solid state fermentation (SSF) was the best system to produce the highest yield of lovastatin by A. terreus A50 as compared to the submerged fermentation (SmF)

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 01 2019
Journal Name
Journal Of Engineering
Effect of laser process an inclined surface cutting of mild steel then analysis data statistically by RSM
...Show More Authors

The regression analysis process is used to study and predicate the surface response by using the design of experiment (DOE) as well as roughness calculation through developing a mathematical model. In this study; response surface methodology and the particular solution technique are used. Design of experiment used a series of the structured statistical analytic approach to investigate the relationship between some parameters and their responses. Surface roughness is one of the important parameters which play an important role. Also, its found that the cutting speed can result in small effects on surface roughness. This work is focusing on all considerations to make interaction between the parameters (position of influenc

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc

... Show More
Scopus (5)
Scopus
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Mar 04 2023
Journal Name
Baghdad Science Journal
Generalised Henstock - Kurzweil Integral with Multiple Point
...Show More Authors

This paper deals with a new Henstock-Kurzweil integral in Banach Space with Bilinear triple n-tuple and integrator function Ψ which depends on multiple points in partition. Finally, exhibit standard results of Generalized Henstock - Kurzweil integral in the theory of integration.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Results In Physics
Alpha clustering preformation probability in even-even and odd-A<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e3355" altimg="si39.svg"><mml:msup><mml:mrow /><mml:mrow><mml:mn>270</mml:mn><mml:mo>−</mml:mo><mml:mn>317</mml:mn></mml:mrow></mml:msup></mml:math>(116 and 117) using cluster formation model and the mass formulae : KTUY05 and WS4
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Water Quality Assessment and Sodium Adsorption Ratio Prediction of Tigris River Using Artificial Neural Network
...Show More Authors

Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201

... Show More
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Artificial Neural Network to Predict Rate of Penetration from Dynamic Elastic Properties in Nasiriya Oil Field
...Show More Authors

   The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 04 2022
Journal Name
Iraqi Journal Of Science
Hiding and Encryption of Secret Image Using Secret Sharing Scheme
...Show More Authors

With the development of information technology and means for information transfer it has become necessary to protect sensitive information. The current research presents a method to protect secret colored images which includes three phases: The first phase calculates hash value using one of hash functions to ensure that no tampering with or updating the contents of the secret image. The second phase is encrypting image and embedding it randomly into appropriate cover image using Random Least Significant Bit (RLSB) technique. Random hiding provides protection of information embedded inside cover image for inability to predict the hiding positions, as well as the difficult of determining the concealment positions through the analysis of im

... Show More
View Publication Preview PDF