This paper considers the maximum number of weekly cases and deaths caused by the COVID-19 pandemic in Iraq from its outbreak in February 2020 until the first of July 2022. Some probability distributions were fitted to the data. Maximum likelihood estimates were obtained and the goodness of fit tests were performed. Results revealed that the maximum weekly cases were best fitted by the Dagum distribution, which was accepted by three goodness of fit tests. The generalized Pareto distribution best fitted the maximum weekly deaths, which was also accepted by the goodness of fit tests. The statistical analysis was carried out using the Easy-Fit software and Microsoft Excel 2019.
This paper concerns with the state and proof the existence and uniqueness theorem of triple state vector solution (TSVS) for the triple nonlinear parabolic partial differential equations (TNPPDEs) ,and triple state vector equations (TSVEs), under suitable assumptions. when the continuous classical triple control vector (CCTCV) is given by using the method of Galerkin (MGA). The existence theorem of a continuous classical optimal triple control vector (CCTOCV) for the continuous classical optimal control governing by the TNPPDEs under suitable conditions is proved.
In this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti
... Show MoreIn this paper, we develop the Hille and Nehari Type criteria for the oscillation of all solutions to the Fractional Differential Equations involving Conformable fractional derivative. Some new oscillatory criteria are obtained by using the Riccati transformations and comparison technique. We show the validity and effectiveness of our results by providing various examples.
It is noted in the title that the paper studies the viewpoint in the novel The Dog and the Long Night by the Iranian novelist Shahranoush Parsi Pour and in the novel Alibaba's Sad Night by the Iraqi novelist Abdulkhaliq Ar-Rikabi. Both are well known novelists, and about whose stories and novels many critical books, MA theses, and Ph.D. dissertations have been written. Also, some of their literary works have won prizes. Here, the researcher shed light on the concept of viewpoint, its types, and its importance in novels in general. This was done along with tackling the two viewpoints in both novels, where similarities and differences were identified. For this end, the researcher has adopted the analytic-descriptive appro
... Show MoreBackground: Chronic obstructive pulmonary disease causes permanent morbidity, premature mortality and great burden to the healthcare system. Smoking is it's most common risk factor and Spirometry is for diagnosing COPD and monitoring its progression.
Objectives: Early detection of chronic obstructive pulmonary disease in symptomatic smokers’ ≥ 40years by spirometry.
Methods: A cross sectional study on all symptomatic smokers aged ≥ 40 years attending ten PHCCs in Baghdad Alkarkh and Alrisafa. Those whose FEV1/FVC was <70% on spirometry; after giving bronchodilator, were considered COPD +ve.
Results: Overall, airway obstruction was seen in
... Show MoreThe reliability of hybrid systems is important in modern technology, specifically in engineering and industrial fields; it is an indicator of the machine's efficiency and ability to operate without interruption for an extended period of time. It also allows for the evaluation of machines and equipment for planning and future development. This study looked at reliability of hybrid (parallel series) systems with asymmetric components using exponential and Pareto distributions. Several simulation experiments were performed to estimate the reliability function of these systems using the Maximum Likelihood method and the Standard Bayes method with a quadratic loss (QL) function and two priors: non-informative (Jeffery) and inform
... Show MoreIn this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
The aim of this paper is to study the quaternary classical continuous optimal control for a quaternary linear parabolic boundary value problems(QLPBVPs). The existence and uniqueness theorem of the continuous quaternary state vector solution for the weak form of the QLPBVPs with given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method. In addition, the existence theorem of a quaternary classical continuous optimal control vector governinig by the QLPBVPs is stated and demonstrated. The Fréchet derivative for the cost function is derived. Finally, the necessary conditions for the optimality theorem of the proposed problem is stated and demonstrated.
The purpose of this paper is to show that for a holomorphic and univalent function in class S, an omitted –value transformation yields a class of starlike functions as a rotation transformation of the Koebe function, allowing both the image and rotation of the function
to be connected. Furthermore, these functions have several properties that are not far from a convexity properties. We also show that Pre- Schwarzian derivative is not invariant since the convexity property of the function is so weak.