This paper considers the maximum number of weekly cases and deaths caused by the COVID-19 pandemic in Iraq from its outbreak in February 2020 until the first of July 2022. Some probability distributions were fitted to the data. Maximum likelihood estimates were obtained and the goodness of fit tests were performed. Results revealed that the maximum weekly cases were best fitted by the Dagum distribution, which was accepted by three goodness of fit tests. The generalized Pareto distribution best fitted the maximum weekly deaths, which was also accepted by the goodness of fit tests. The statistical analysis was carried out using the Easy-Fit software and Microsoft Excel 2019.
The purpose of this paper is to show that for a holomorphic and univalent function in class S, an omitted –value transformation yields a class of starlike functions as a rotation transformation of the Koebe function, allowing both the image and rotation of the function
to be connected. Furthermore, these functions have several properties that are not far from a convexity properties. We also show that Pre- Schwarzian derivative is not invariant since the convexity property of the function is so weak.
This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP). The given BVP is written in its discrete (DI) weak form (WEF), and is proved that it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results
... Show MoreThe aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.
This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions. Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs is stated and proved.
This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud
... Show MoreThis work is concerned with studying the solvability for optimal classical continuous control quaternary vector problem that controls by quaternary linear hyperbolic boundary value problem. The existence of the unique quaternary state vector solution for the quaternary linear hyperbolic boundary value problem is studied and demonstrated by employing the method of Galerkin, where the classical continuous control quaternary vector is Known. Also, the existence theorem of an optimal classical continuous control quaternary vector related to the quaternary linear hyperbolic boundary value problem is demonstrated. The existence of a unique solution to the adjoint quaternary linear hyperbolic boundary value problem a
... Show MoreIn this paper, the nonclassical approach to dynamic programming for the optimal control problem via strongly continuous semigroup has been presented. The dual value function VD ( .,. ) of the problem is defined and characterized. We find that it satisfied the dual dynamic programming principle and dual Hamilton Jacobi –Bellman equation. Also, some properties of VD (. , .) have been studied, such as, various kinds of continuities and boundedness, these properties used to give a sufficient condition for optimality. A suitable verification theorem to find a dual optimal feedback control has been proved. Finally gives an example which illustrates the value of the theorem which deals with the sufficient condition for optimality.
<
Abstract
This research’s goal is to restore and to revive the jurisprudence of Mother of Believers (Um alMuaamineen) “Um Salmah” "may God bless her", and to highlight her outstanding assimilation and understanding of religion and her conscious thought. The current research is a comparative scientific theoretical study represented in the comparison of jurisprudence of “Um Salamah” with Hadiths of fasting and pilgrimage rules as well as the duration mentioned in jurisprudence of for doctrines( 4 schools of thought )to identify these hadiths with the inclusion and discussion of their evidence.
The current research included two topics: the first one is to identify and introduce
... Show More