This paper considers the maximum number of weekly cases and deaths caused by the COVID-19 pandemic in Iraq from its outbreak in February 2020 until the first of July 2022. Some probability distributions were fitted to the data. Maximum likelihood estimates were obtained and the goodness of fit tests were performed. Results revealed that the maximum weekly cases were best fitted by the Dagum distribution, which was accepted by three goodness of fit tests. The generalized Pareto distribution best fitted the maximum weekly deaths, which was also accepted by the goodness of fit tests. The statistical analysis was carried out using the Easy-Fit software and Microsoft Excel 2019.
The reliability of hybrid systems is important in modern technology, specifically in engineering and industrial fields; it is an indicator of the machine's efficiency and ability to operate without interruption for an extended period of time. It also allows for the evaluation of machines and equipment for planning and future development. This study looked at reliability of hybrid (parallel series) systems with asymmetric components using exponential and Pareto distributions. Several simulation experiments were performed to estimate the reliability function of these systems using the Maximum Likelihood method and the Standard Bayes method with a quadratic loss (QL) function and two priors: non-informative (Jeffery) and inform
... Show MoreIn this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
The aim of this paper is to study the quaternary classical continuous optimal control for a quaternary linear parabolic boundary value problems(QLPBVPs). The existence and uniqueness theorem of the continuous quaternary state vector solution for the weak form of the QLPBVPs with given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method. In addition, the existence theorem of a quaternary classical continuous optimal control vector governinig by the QLPBVPs is stated and demonstrated. The Fréchet derivative for the cost function is derived. Finally, the necessary conditions for the optimality theorem of the proposed problem is stated and demonstrated.
The purpose of this paper is to show that for a holomorphic and univalent function in class S, an omitted –value transformation yields a class of starlike functions as a rotation transformation of the Koebe function, allowing both the image and rotation of the function
to be connected. Furthermore, these functions have several properties that are not far from a convexity properties. We also show that Pre- Schwarzian derivative is not invariant since the convexity property of the function is so weak.
This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP). The given BVP is written in its discrete (DI) weak form (WEF), and is proved that it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results
... Show MoreThe aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.
This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions. Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs is stated and proved.
This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud
... Show More