Vitamin D3 deficiency is regarded as a public health issue in Iraq, particularly during the winter. Sun exposure is the main source of vitamin D3, where the surface ultraviolet (UV) radiation plays an important role in human health. The amount of time that must be spent in the sun each day was determined for the amount of exposed skin, for all skin types, with and without sunscreen under clear sky conditions in the city of Baghdad (Long 44.375, Lat 33.375). UV index data was obtained by TEMIS satellite during the year 2021. From data analysis, we found that most days during the year were within the high level of ultraviolet radiation values in the city of Baghdad, and most of them were during the summer, where the person needed less time of exposure to sunlight to obtain vitamin D3 in the case of exposing the face and hands or the whole body. As a result, it can be concluded that the amount of UV radiation is affected by several factors: depending on latitude, day of the year, time of day and the season, body area exposed to the radiation, and use of sun protection factor. These factors influence the time of sun exposure required to initiate cutaneous vitamin D3 synthesis.
The aim of present work is to improve mechanical and fatigue properties for Aluminum alloy7049 by using Nano composites technique. The ZrO2 with an average grain diameter of 30-40 nm, was selected as Nano particles, to reinforce Aluminum alloy7049 with different percentage as, 2, 4, 6 and 7 %. The Stir casting method was used to fabricate the Nano composites materials due to economical route for improvement and processing of metal matrix composites. The experimental results were shown that the adding of zirconium oxide (ZrO2) as reinforced material leads to improve mechanical properties. The best percentage of improvement of mechanical properties of 7049 AA was with 4% wt. of ZrO2 about (7.76% ) for ultim
... Show MoreA mathematical model is developed to discuss the impact of the Hall current and the Joule heating on the peristaltic flux of finitely extensible nonlinear elastic Peterlin (FENE-P) fluid in a tapered tube with mild stenosis. The fluid movement along the wall surface resulted from the sinusoidal wave flowing with constant speed. Conditions of velocity and thermal slip are applied. Lubrication approximation is adopted to modify the governing flow problem. To discover the solution to a system of equations, the regular perturbation approach is used. The effects of the different physical parameters are debated and graphically shown in a set of figures. It is discovered that as the Hall current parameter is increased and the Hartman n
... Show MoreElectronic remote identification (ER-ID) is a new radio frequency (RF) technology that is initiated by the Federal Aviation Authorities (FAA). For security reasons, traffic control, and so on, ER-ID has been applied for drones by the FAA to enable them to transmit their unique identification and location so that unauthorized drones can be identified. The current limitation of the existing ER-ID algorithms is that the application is limited to the Wi-Fi and Bluetooth wireless controllers, which results in a maximum range of 10–20 m for Bluetooth and 50–100 m for Wi-Fi. In this study, a mathematical computing technique based on finite state automaton (FSA) is introduced to expand the range of the ER-ID RF system and reduce the ene
... Show MoreIn this paper, thin films of undoped and nickel oxide (NiO) doped titanium dioxide (TiO2) were prepared using the chemical spray pyrolysis deposition (CSP) technique, with different concentrations of nickel oxide (NiO) in the range (3-9) wt%. The morphological, structural, electrical, and sensing properties of a gas of the prepared thin films were examined. XRD measurements showed that TiO2 films have a polycrystalline structure. AFM analysis showed that these films have a regular structure both before and after doping . The roughness of these films decreased after adding impurities but then the opposite of that took place. The electrical and gas sens
... Show MoreMesoporous silica (MPS) nanoparticle was prepared as carriers for drug delivery systems by sol–gel method from sodium silicate as inexpensive precursor of silica and Cocamidopropyl betaine (CABP) as template. The silica particles were characterized by SEM, TEM, AFM, XRD, and N2adsorption–desorption isotherms. The results show that the MPS particle in the nanorange (40-80 nm ) with average diameter equal to 62.15 nm has rods particle morphology, specific surface area is 1096.122 m2/g, pore volume 0.900 cm3/g, with average pore diameter 2.902 nm, which can serve as efficient carriers for drugs. The adsorption kinetic of Ciprofloxacin (CIP) drug was studied and the data were analyzed and found to match well with
... Show MoreCatalytic reduction is considered an effective approach for the reduction of toxic organic pollutants from the environment, but finding an active catalyst is still a big challenge. Herein, Ag decorated CeO2 catalyst was synthesized through polyol reduction method and applied for catalytic reduction (conversion) of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The Ag decorated CeO2 catalyst displayed an outstanding reduction activity with 99% conversion of 4-NP in 5 min with a 0.61 min−1 reaction rate (k). A number of structural characterization techniques were executed to investigate the influence of Ag on CeO2 and its effect on the catalytic conversion of 4-NP. The outstanding catalytic performances of the Ag-CeO2 catalyst can be assigne
... Show More