The time fractional order differential equations are fundamental tools that are used for modeling neuronal dynamics. These equations are obtained by substituting the time derivative of order where , in the standard equation with the Caputo fractional formula. In this paper, two implicit difference schemes: the linearly Euler implicit and the Crank-Nicolson (CN) finite difference schemes, are employed in solving a one-dimensional time-fractional semilinear equation with Dirichlet boundary conditions. Moreover, the consistency, stability and convergence of the proposed schemes are investigated. We prove that the IEM is unconditionally stable, while CNM is conditionally stable. Furthermore, a comparative study between these two schemes will be conducted via numerical experiments. The efficiency of the proposed schemes in terms of absolute errors, order of accuracy and computing time will be reported and discussed.
In engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode
... Show MoreThis paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.
The aim of this paper is to construct cyclic subgroups of the projective general linear group over from the companion matrix, and then form caps of various degrees in . Geometric properties of these caps as secant distributions and index distributions are given and determined if they are complete. Also, partitioned of into disjoint lines is discussed.
Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced. The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studie
... Show MoreBackground: Radioactive iodine-131 therapy is highly effective in treating patients with hyperthyroidism. An ablative dose is preferred by a number of endocrinologists, and, a fixed dose protocol seems to be better than a calculated dose in real practice.
Objective: To check for hypothyroidism in hyperthyroid patients one year after RAI therapy, comparing between the results of high ablative versus usual dosages of RAI-131.
Methods: This study included 174 hyperthyroid patients, 101 males and 73 females, divided into 2 groups, the first consisted of 162 patients given a usual fixed dose of RAI while the second consisted of 12 patients given a high fixed ablati
... Show Morein this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
In this study, the performance of the adaptive optics (AO) system was analyzed through a numerical computer simulation implemented in MATLAB. Making a phase screen involved turning computer-generated random numbers into two-dimensional arrays of phase values on a sample point grid with matching statistics. Von Karman turbulence was created depending on the power spectral density. Several simulated point spread functions (PSFs) and modulation transfer functions (MTFs) for different values of the Fried coherent diameter (ro) were used to show how rough the atmosphere was. To evaluate the effectiveness of the optical system (telescope), the Strehl ratio (S) was computed. The compensation procedure for an AO syst
... Show MoreThe aim of this work is to evaluate the onc-electron expectation values < r > from the radial electronic density funetion D(r) for different wave ?'unctions for the 2s state of Li atom. The wave functions used were published in 1963,174? and 1993 , respectavily. Using " " ' wave function as a Slater determinant has used the positioning technique for the analysis open shell system of Li (Is2 2s) State.
Test results of nine reinforced concrete one way slab with and without lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural response of one way slabs. The test parameters were considered is the lacing steel ratios of (0, 0.0025, 0.0045, and 0.0065), flexural steel ratios of (0.0025, 0.0045, and 0.0065) and span to the effective depth ratios of (11, 13, and 16). Two specimens had no lacing reinforcement and the remaining seven specimens had the lacing reinforcement. Four point bending test were carried out, one of the specimens was tested under the static load applied gradually up to failure and the other specimens were tested under repeated load (5 cyc
... Show More