The research deals with an evolutionary-based mutation with functional annotation to identify protein complexes within PPI networks. An important field of research in computational biology is the difficult and fundamental challenge of revealing complexes in protein interaction networks. The complex detection models that have been developed to tackle challenges are mostly dependent on topological properties and rarely use the biological properties of PPI networks. This research aims to push the evolutionary algorithm to its maximum by employing gene ontology (GO) to communicate across proteins based on biological information similarity for direct genes. The outcomes show that the suggested method can be utilized to improve the predictability of the complexes identified. The GO functional annotation of proteins as a heuristic guide is injected into the framework of single-objective evolutionary algorithms (EAs), while the complex detection community score (CS) model works as a fitness function in EAs. In the experiments, we analyzed the performance of our proposed algorithm when applied to the publicly accessible yeast protein networks. The results show a considerable improvement in the detection ability of complexes in the PPI network.
In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth
... Show MoreThe main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256) in our research, compressed them by using MLP for each
... Show MoreThe Tigris River in Iraq is of highly meandering in several of its parts. So, the largest meandering inside Baghdad City, is in Al-Jadriyah. During its course, the Tigris Riverbanks are facing erosion frequently due to alteration in the geomorphological and hydrological characteristics affecting the river channel. The entire length of Tigris River from the northern entrance of Baghdad to the convergence with Diyala River at southern of Baghdad is about 49 km length. The Tigris River is suffering from the erosion, deposition, and migration conditions. The river migration was found as maximum in the left bank at the side of the University, and lesser in the right bank in the opposite side, Dora. The aim of this study is to measure the magn
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show MoreIn this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
Essential approaches involving photons are among the most common uses of parallel optical computation due to their recent invention, ease of production, and low cost. As a result, most researchers have concentrated their efforts on it. The Basic Arithmetic Unit BAU is built using a three-step approach that uses optical gates with three states to configure the circuitry for addition, subtraction, and multiplication. This is a new optical computing method based on the usage of a radix of (2): a binary number with a signed-digit (BSD) system that includes the numbers -1, 0, and 1. Light with horizontal polarization (LHP) (↔), light with no intensity (LNI) (⥀), and light with vertical polarization (LVP) (↨) is represen
... Show More
The article critically analyzes traditional translation models. The most influential models of translation in the second half of the 20th century have been mentioned, among which the theory of formal and dynamic equivalence, the theory of regular correspondences, informative, situational-denotative, functional-pragmatic theory of communication levels have been considered. The selected models have been analyzed from the point of view of the universality of their use for different types and types of translation, as well as the ability to comprehend the deep links established between the original and the translation.
Аннотация
Load balancing in computer networks is one of the most subjects that has got researcher's attention in the last decade. Load balancing will lead to reduce processing time and memory usage that are the most two concerns of the network companies in now days, and they are the most two factors that determine if the approach is worthy applicable or not. There are two kinds of load balancing, distributing jobs among other servers before processing starts and stays at that server to the end of the process is called static load balancing, and moving jobs during processing is called dynamic load balancing. In this research, two algorithms are designed and implemented, the History Usage (HU) algorithm that statically balances the load of a Loaded
... Show MoreLongitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.
In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.
The longitudinal balanced data profile was compiled into subgroup
... Show MoreIn this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro
... Show More