Widespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-Sklearn tool. First, an analysis of the Auto-Sklearn process is done by studying the impact of several learning settings and parameters on the COVID-19 dataset using different classification methods, namely meta-learning, ensemble learning, and a combination of ensemble learning and meta-learning. The results show that using Auto-Sklearn with a meta-learning and ensemble learning parameter model predicts the patients infected with COVID-19 with high accuracy, reaching 96%. Furthermore, the best algorithm selected is the Random Forest Classifier (RF), which outperforms other classification methods. Finally, AutoML can assist those new to data sciences or programming skills in selecting the appropriate algorithm and hyperparameters and reducing the number of steps required to achieve the best results.
This research paper tries to show the significance of the narrative structure in the television advertisement and its connotations. The researchers chose the annual advertisement of Zain Mobile Telecommunication Company for the year 2020, which shed light on the global Corona pandemic crisis. The idea of the advertisement won wide approval as it focused on the suffering that everyone is witnessing like medical and security personnel in particular, and family relationships consequences.
In addition to the positive global interaction with the message presented by the Company in these exceptional circumstances. The advertisement, which lasted for 2.35 minutes, exceeded 13 million views in a short period of time. This prompted us to choos
Background: Corona virus disease 2019 (COVID-19) is a communicable disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first identified in December 2019 in Wuhan, China, and has since spread globally, leading to an ongoing pandemic.
Aim of study: to review the clinical, lab investigation and imaging techniques, in pediatric age group affected COVID-19 to help medical experts better understand and supply timely diagnosis and treatment.
Subjects and methods: this study is a retrospective descriptive clinical study. The medical records of patients were analyzed. Information’s recorded include demographic data, exposure history, symptoms, signs, laboratory findin
... Show MoreRecognizing facial expressions and emotions is a basic skill that is learned at an early age and it is important for human social interaction. Facial expressions are one of the most powerful natural and immediate means that humans use to express their feelings and intentions. Therefore, automatic emotion recognition based on facial expressions become an interesting area in research, which had been introduced and applied in many areas such as security, safety health, and human machine interface (HMI). Facial expression recognition transition from controlled environmental conditions and their improvement and succession of recent deep learning approaches from different areas made facial expression representation mostly based on u
... Show MoreBackground: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts.
Objectives:<
... Show MoreBackground: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts. Objectives: To evaluate the diagnostic efficacy of Automated breast ultrasound and compare
... Show MoreBackground: Although underdeveloped in Iraq, telehealth was one tool used to continue health service provision during the COVID-19 pandemic. Aim: To assess women’s experiences and satisfaction with gynaecological and obstetric telehealth services in Iraq during the COVID-19 pandemic. Methods: Free telehealth services were provided by 4 obstetrician-gynaecologists associated with private clinics in 2020–2021. All patients who accessed the services between June 2020 and February 2021 were invited to complete a postconsultation survey on their experience and satisfaction with services. Results were analysed using descriptive statistics and logistic regression conducted using SPSS version 25. Results: A total of 151 (30.2%) women re
... Show More