Preferred Language
Articles
/
ijs-8379
COVID-19 Detection via Blood Tests using an Automated Machine Learning Tool (Auto-Sklearn)
...Show More Authors

     Widespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-Sklearn tool. First, an analysis of the Auto-Sklearn process is done by studying the impact of several learning settings and parameters on the COVID-19 dataset using different classification methods, namely meta-learning, ensemble learning, and a combination of ensemble learning and meta-learning. The results show that using Auto-Sklearn with a meta-learning and ensemble learning parameter model predicts the patients infected with COVID-19 with high accuracy, reaching 96%. Furthermore, the best algorithm selected is the Random Forest Classifier (RF), which outperforms other classification methods. Finally, AutoML can assist those new to data sciences or programming skills in selecting the appropriate algorithm and hyperparameters and reducing the number of steps required to achieve the best results.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials & Continua
Credit Card Fraud Detection Using Improved Deep Learning Models
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Thu Dec 09 2021
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Exacerbation of COVID 19 in Hypertensive Patients ( A review)
...Show More Authors

Since its discovery in December 2019, corona virus was outbreak worldwide with very rapid rate, so it described by WHO as pandemic. It associated with severe acute respiratory distress syndrome, and can enter to cells through Angiotensin Converting Enzyme 2 (ACE 2) receptor which play an important role as regulator for blood pressure. Hypertension is a potential risk factor for sever acute respiratory syndrome COVID-19, and associated with high mortality rate as shown in many epidemiological studies. Moreover, specific antihypertensive medications that infected patients were receiving are not known; only data about renin-angiotensin-aldosterone system (RAAS) are available.  

View Publication Preview PDF
Scopus (5)
Crossref (6)
Scopus Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Advances In Science And Technology Research Journal
Power Predicting for Power Take-Off Shaft of a Disc Maize Silage Harvester Using Machine Learning
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Future of Mathematical Modelling: A Review of COVID-19 Infected Cases Using S-I-R Model
...Show More Authors

The spread of novel coronavirus disease (COVID-19) has resulted in chaos around the globe. The infected cases are still increasing, with many countries still showing a trend of growing daily cases. To forecast the trend of active cases, a mathematical model, namely the SIR model was used, to visualize the spread of COVID-19. For this article, the forecast of the spread of the virus in Malaysia has been made, assuming that all Malaysian will eventually be susceptible. With no vaccine and antiviral drug currently developed, the visualization of how the peak of infection (namely flattening the curve) can be reduced to minimize the effect of COVID-19 disease. For Malaysians, let’s ensure to follow the rules and obey the SOP to lower the

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (11)
Crossref (6)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun May 01 2011
Journal Name
Information Sciences
Design and implementation of a t-way test data generation strategy with automated execution tool support
...Show More Authors

View Publication
Scopus (65)
Crossref (50)
Scopus Clarivate Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Al-kindy College Medical Journal
Changing the Trends in Surgery during the COVID-19 Times: An Experience from the Eastern Uttar Pradesh State, India: CHANGING TRENDS IN SURGERY DURING COVID TIMES
...Show More Authors

Background: The COVID-19 pandemic has an immense effect not only on the social and economic lives of people but also on the surgical lives of surgeons, residents, nursing staff, and patients as well as ground level staff. Amidst this COVID pandemic, emergency surgeries were being done but at a decreased rate, whereas elective cases depended on the will of hospitals, surgeons, and patients. Study aims to promulgate a "Neo–Surgical Check Box" by amalgamating the WHO surgical checklist and the results obtained from the questionnaires.

Subjects and Methods: After receiving ethical clearance from the Institute Ethical Committee, an online questionnaire with 50 questions divided into

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Ecological Engineering
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
A study on predicting crime rates through machine learning and data mining using text
...Show More Authors
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o</p> ... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref