In this paper, Al and Cu Plasmas that produced by pulsed Nd:YAG laser with fundamental wave length with a pulse duration of 6 nS focused onto Al and Cu targets in atmospheric air are investigated spectroscopically. The influence of pulse laser energy on the some Al and Cu plasmas characteristics was diagnosed by using optical emission spectroscopy for the wavelength range 320-740 nm. The results observed that the increase of pulse laser energy causes to increase all plasma characteristics of both plasmas under study and shown increasing of the emission line intensity. The appearance of the atomic and ionic emission lines of an element in the emission spectrum depends on the ionization energy of target atoms. The plasma characteristics are subjected to the ionization energy of the target element and laser energy.
The aim of this research is to design and construct a semiconductor laser range finder
operating in the near infrared range for ranging and designation. The main part of the range finder is the
transmitter which is a semiconductor laser type GaAs of 0.904 mm wavelength with a beam expander,
and the receiver with its collecting optics. The characteristics of transmitter pulse width were 200ns and
threshold current 10 Amp. and maximum operating current 38 Amp. The repetition rate was set at 660 Hz
and maximum output power about 1 watt. The divergence of the beam was 0.268o. A special computer
code was used for optimum optical design and laser spot size analysis and for calculation of atmosphere
attenuation.
Soil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). Th
... Show MoreThis work study the effect of laser surface heat treatment on physical properties (green density, density after sintering, theoretical density and porosity)of a composite material of an Al powder as a matrix with different percentage of B4C powder as additive material. This work was done by two stages: First stage: Production the maincomposite material which is contain Al powder with grain size 24μm as a matrix and B4C powder with grain size 50μm as additive with different weight percentage (5%,10%,15%,20%,25%,30%), and the powders Maxined for suitable time 15min, after that the mixture compacted with 2ton and sintered at 550C0. Second stage: Laser surface treatment was done for the productive composite material after sintering by usin
... Show MoreHigh-intensity laser-produced plasma has been extensively investigated in many studies. In this demonstration, a new spectral range was observed in the resulted spectra from the laser-plasma interaction, which opens up new discussions for new light source generation. Moreover, the characterizations of plasma have been improved through the interaction process of laser-plasma. Three types of laser were incorporated in the measurements, continuous-wave CW He-Ne laser, CW diode green laser, pulse Nd: YAG laser. As the plasma system, DC glow discharge plasma under the vacuum chamber was considered in this research. The plasma spectral peaks were evaluated, where they refer to Nitrogen gas. The results indicated that the
... Show MoreNew evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanopartic
... Show MoreUtilizing the Turbo C programming language, the atmospheric earth model is created from sea level to 86 km. This model has been used to determine atmospheric Earth parameters in this study. Analytical derivations of these parameters are made using the balancing forces theory and the hydrostatic equation. The effects of altitude on density, pressure, temperature, gravitational acceleration, sound speed, scale height, and molecular weight are examined. The mass of the atmosphere is equal to about 50% between sea level and 5.5 km. g is equal to 9.65 m/s2 at 50 km altitude, which is 9% lower than 9.8 m/s2 at sea level. However, at 86 km altitude, g is close to 9.51 m/s2, which is close to 15% smaller
... Show MoreThe brief description to the theory of propagation of electromagnetic waves in plasma was done. The cutoff and resonance regions have been showed. The principles of plasma heating at electron cyclotron resonance (ECRH) method have been mentioned. The numerical simulation to three different station: Tosca station in United Kingdom, ISX-B station in USA and T-10 station in Russia had been done. The optical depth and the friction of energy absorbed A have been calculated. The simulation results indicate that both and A are increase with size of the tokamak and it is possible to obtain full absorption in large tokamak.
Experimental study on the effect of cylindrical hollow cathode, working pressure and magnetic field on spatial glow distribution and the characteristics of plasma produced by dc discharge in Argon gas, were investigated by image analyses for the plume within the plasma. It was found that the emission intensity appears as a periodic structure with many peaks appeared between the electrodes. Increasing the pressure leads to increase the number of intensity peaks finally converted to continuous form at high pressure, especially with applied of magnetic field, i.e. the plasma is more stable with the presence of magnetic field. The emission intensity study of plasma showed that the intensity has a maximum value at 1.07 mbar pressure and decre
... Show MoreIn this work, thin films of cadmium oxide: nickel oxide (CdO: NiO) were prepared by pulsed laser deposition at different pulse energies of Nd: YAG laser. The thin films' properties were determined by various techniques to study the effect of pulse laser energy on thin films' properties. X-ray diffraction measurements showed a mixture of both phases. The degree of crystallinity and the lattice constant increase with the laser energy increase, while the lattice strain decreases. FE-SEM images show that the substrates' entire surface is uniformly covered, without any cracks, with a well-connected structure consisting of small spherical particles ranging in size from 15 to 120 nm. Increasing the laser power causes to increase the pa
... Show More