The 2D electrical resistivity imaging (ERI) is a non-destructive method with good efficiency to detect shallow subsurface features. The archeological subsurface features were investigated with this method in most cases with the assistance of other methods such as GPR method. Eleven 2D ERI profiles were carried out to investigate the subsurface archeological features in the Kish site in the Babylon area. The 2D electrical resistivity survey was achieved with ABEM Terrameter-LS2 Device and 30 electrodes with 1-meter spacing between the adjacent electrodes along each profile. The length of the profile is 29 meters and the spacing between the adjacent profiles is 3 meters. The software RES2DINV was used to obtain the final inverted models. The resistivity value of the study site is low, not exceeding 10 ohm.m. The variation in the resistivity anomalies values indicates many possible buried walls on the site. The clearest anomaly, which shows relatively high resistivity at the distance range of 8-11 m, appeared in all profiles nearly at the same position and extended in depth from 0.25-4 meters. This anomaly is interpreted as an ancient wall. Profiles 1, 5, and 10 to check the resistivity result. The GPR survey result generally confirms the resistivity result. The 2D ERI and GPR methods successfully detect the buried wall in the study site.
We are used Bayes estimators for unknown scale parameter when shape Parameter is known of Erlang distribution. Assuming different informative priors for unknown scale parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreBackground: Cystinosis is a rare autosomal recessive lysosomal storage disease with high morbidity and mortality. It is caused by mutations in the CTNS gene that encodes the cystine transporter, cystinosin, which leads to lysosomal cystine accumulation. It is the major cause of inherited Fanconi syndrome, and should be suspected in young children with failure to thrive and signs of renal proximal tubular damage. The diagnosis can be missed in infants, because not all signs of renal Fanconi syndrome are present during the first months of life. Elevated white blood cell cystine content is the cornerstone of the diagnosis. Since chitotriosidase (CHIT1 or chitinase-1) is mainly produced by activated macrophages both in normal and inflammator
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreThe co-occurrence of metabolic syndrome with type 2 diabetes mellitus (T2DM) will potentiate the morbidity and mortality that may be associated with each case. Fasting triglycerides-glucose index (TyG index) has been recommended as a useful marker to predict metabolic syndrome. Our study aimed to introduce gender-specific cut-off values of triglycerides- glucose index for diagnosing metabolic syndrome associated with type 2 diabetes mellitus. The data were collected from Baghdad hospitals between May - December 2019. The number of eligible participants was 424. National cholesterol education program, Adult Treatment Panel III criteria were used to define metabolic syndrome. Measurement of fasting blood glucose, lipid pro
... Show MoreAbstract
The current research aims to reveal the extent to which all scoring rubrics data for the electronic work file conform to the partial estimation model according to the number of assumed dimensions. The study sample consisted of (356) female students. The study concluded that the list with the one-dimensional assumption is more appropriate than the multi-dimensional assumption, The current research recommends preparing unified correction rules for the different methods of performance evaluation in the basic courses. It also suggests the importance of conducting studies aimed at examining the appropriateness of different evaluation methods for models of response theory to the
... Show More