In this paper, some conditions to guarantee the existence of bounded solution to the second order multi delayed arguments differential equation are given. The Krasnoselskii theorem used to the Lebesgue’s dominated convergence and fixed point to obtain some new sufficient conditions for existence of solutions. Some important lemmas are established that are useful to prove the main results for oscillatory property. We also submitted some sufficient conditions to ensure the oscillation criteria of bounded solutions to the same equation.
In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:
which is defined in the open unit disk satisfying the following condition
This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.
This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.
In this paper, there are two main objectives. The first objective is to study the relationship between the density property and some modules in detail, for instance; semisimple and divisible modules. The Addition complement has a good relationship with the density property of the modules as this importance is highlighted by any submodule N of M has an addition complement with Rad(M)=0. The second objective is to clarify the relationship between the density property and the essential submodules with some examples. As an example of this relationship, we studied the torsion-free module and its relationship with the essential submodules in module M.
من المعلوم إن تسجيل حق رهن على عقار لا يؤدي الى منع الراهن من التصرف في العقار المرهون، فالراهن يستطيع التصرف في العقار المرهون بعد تسجيل التأمين العيني عليه ، ولكن تصرفه لا يؤثر في حق صاحب التأمين العيني ، فهو تصرف غير نافذ في مواجهته لأنه جاء بعد تسجيل الرهن على الرغم من إن التصرف يكون صحيحا وينتج جميع آثاره بين المتصرف (( الراهن )) والمتصرف إليه (( الحائز )) والسبب في ذلك يعود الى انه
... Show MoreThe problem of reconstruction of a timewise dependent coefficient and free boundary at once in a nonlocal diffusion equation under Stefan and heat Flux as nonlocal overdetermination conditions have been considered. A Crank–Nicolson finite difference method (FDM) combined with the trapezoidal rule quadrature is used for the direct problem. While the inverse problem is reformulated as a nonlinear regularized least-square optimization problem with simple bound and solved efficiently by MATLAB subroutine lsqnonlin from the optimization toolbox. Since the problem under investigation is generally ill-posed, a small error in the input data leads to a huge error in the output, then Tikhonov’s regularization technique is app
... Show MoreKey components estimated in Acol total plant leaves and the results were as follows plant Acol humidity 72%
An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT
... Show More