Age is a predominant parameter for arbitrating an individual, for security and access concerns of the data that exist in cyber space. Nowadays we find a rapid growth in unethical practices from youngsters as well as skilled cyber users. Facial image renders a variety of information that can be used, when processed to ascertain the age of individuals. In this paper, local facial features are considered to predict the age group, where local Binary Pattern (LBP) is extracted from four regions of facial images. The prominent areas where wrinkles are developed naturally in human as age increases are taken for feature extraction. Further these feature vectors are subjected to ensemble techniques that increases the accuracy of the model hence improving the efficiency in terms of MAE and performance parameters for age group classification. The proposed approach was evaluated on FG-NET facial aging dataset.
المستخلص:
في هذا البحث , استعملنا طرائق مختلفة لتقدير معلمة القياس للتوزيع الاسي كمقدر الإمكان الأعظم ومقدر العزوم ومقدر بيز في ستة أنواع مختلفة عندما يكون التوزيع الأولي لمعلمة القياس : توزيع لافي (Levy) وتوزيع كامبل من النوع الثاني وتوزيع معكوس مربع كاي وتوزيع معكوس كاما وتوزيع غير الملائم (Improper) وتوزيع
... Show More