The new type of paranormal operators that have been defined in this study on the Hilbert space, is paranormal operators. In this paper we introduce and discuss some properties of this concept such as: the sum and product of two paranormal, the power of paranormal. Further, the relationships between the paranormal operators and other kinds of paranormal operators have been studied.
In 2010, Long and Zeng introduced a new generalization of the Bernstein polynomials that depends on a parameter and called -Bernstein polynomials. After that, in 2018, Lain and Zhou studied the uniform convergence for these -polynomials and obtained a Voronovaskaja-type asymptotic formula in ordinary approximation. This paper studies the convergence theorem and gives two Voronovaskaja-type asymptotic formulas of the sequence of -Bernstein polynomials in both ordinary and simultaneous approximations. For this purpose, we discuss the possibility of finding the recurrence relations of the -th order moment for these polynomials and evaluate the values of -Bernstein for the functions , is a non-negative integer
In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.
In this article, we introduced a new concept of mappings called δZA - Quasi contractive mapping and we study the K*- iteration process for approximation of fixed points, and we proved that this iteration process is faster than the existing leading iteration processes like Noor iteration process, CR -iteration process, SP and Karahan Two- step iteration process for 𝛿𝒵𝒜 − quasi contraction mappings. We supported our analytic proof by a numerical example.
In this paper, we give new results and proofs that include the notion of norm attainment set of bounded linear operators on a smooth Banach spaces and using these results to characterize a bounded linear operators on smooth Banach spaces that preserve of approximate - -orthogonality. Noting that this work takes brief sidetrack in terms of approximate - -orthogonality relations characterizations of a smooth Banach spaces.
A submodule N of a module M is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly -nonsigular. We investigate some properties of strongly -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.
This article contains a new generalizations of Ϻ-hyponormal operators which is namely (Ϻ,θ)-hyponormal operator define on Hilbert space H. Furthermore, we investigate some properties of this concept such as the product and sum of two (Ϻ, θ)-hyponormal operators, At the end the operator equation where , has been used for getting several characterization of (Ϻ,θ)-hyponormal operators.
in this paper we adopted ways for detecting edges locally classical prewitt operators and modification it are adopted to perform the edge detection and comparing then with sobel opreators the study shows that using a prewitt opreators
Over the last few decades, many instructors have been trying all kinds of teaching methods, but without benefit. Nevertheless, in the 1986, a new technique is appeared which called K-W-L technique, it is specified for reading comprehension passages because reading skill is not easy matter for students for specific purposes (ESP).therefore, the K-W-L technique is a good one for thinking and experiences. To fulfill the aims and verify the hypothesis which reads as follows" it is hypothesized that there are no significant differences between the achievements of students who are taught according to K-W-L technique and those who are taught according to the traditional method
... Show MoreMany approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
The goal of this study is to provide a new explicit iterative process method approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend
... Show More